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Abstract

Let In be the set of involutions in the symmetric group Sn, and for A ⊆ {0, 1, . . . , n},
let

FA
n = {σ ∈ In | σ has a fixed points for some a ∈ A}.

We give a complete characterisation of the sets A for which FA
n , with the order

induced by the Bruhat order on Sn, is a graded poset. In particular, we prove that

F
{1}
n (i.e., the set of involutions with exactly one fixed point) is graded, which settles

a conjecture of Hultman in the affirmative. When FA
n is graded, we give its rank

function. We also give a short new proof of the EL-shellability of F
{0}
n (i.e., the

set of fixed point-free involutions), which was recently proved by Can, Cherniavsky,
and Twelbeck.
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1 Introduction

Partially ordered by the Bruhat order, the symmetric group Sn is a graded
poset whose rank function is given by the number of inversions, and Edel-
man [4] proved that it is EL-shellable. Richardson and Springer [10] proved
that the set In of involutions in Sn and the set F 0

n of fixed point-free involutions
are graded. Incitti [9] proved that the rank function of In can be expressed as
the average of the number of inversions and the number of exceedances, and
that In is EL-shellable. Hultman [8] studied (in a more general setting, which
we shall describe shortly) F 0

n and F 1
n , the set of involutions with exactly one

fixed point. It follows that F 0
n is graded and Hultman conjectured that the

same is true for F 1
n . Can, Cherniavsky, and Twelbeck [3] recently proved that

F 0
n is EL-shellable.

We consider the following generalisation. For a ∈ {0, 1, . . . , n}, let F a
n be

the conjugacy class in Sn consisting of the involutions with a fixed points, and
for A ⊆ {0, 1, . . . , n}, let

FA
n =

⋃
a∈A

F a
n .

Both In and FA
n are regarded as posets with the order induced by the Bruhat

order on Sn. Note that

FA
n = {σ ∈ In | σ has a fixed points for some a ∈ A}.

Also note that for all elements in In, the number of fixed points is congruent
to n modulo 2. Hence, we may assume that all members of A have the same
parity as n.

Depicted in Figures 1 and 2, are the Hasse diagrams of I4, F
0
4 , and F 2

4 .

Our main result is a complete characterisation of the sets A for which FA
n

is graded. In particular, we prove that F 1
n is graded.

Informally, FA
n is graded precisely when A−{n} is empty or an “interval,”

which may consist of a single element if it is 0, 1, or n − 2. The following
theorem, which is our main result, makes the above precise. It also gives the
rank function of FA

n when it exists.

Theorem 1 The poset FA
n is graded if and only if A−{n} = ∅ or A−{n} =

{a1, a1 +2, . . . , a2} with a1 ∈ {0, 1}, a2 = n− 2, or a2 − a1 ≥ 2. Furthermore,

when FA
n is graded, its rank function ρ is given by

ρ(σ) =
inv(σ) + exc(σ)− n+ ã

2
+

{
1 if n ∈ A

0 otherwise,
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Figure 1. Hasse diagram of I4 with the involutions with zero (◦), two (•), and four
(�) fixed points indicated.
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Figure 2. Hasse diagrams of F 0
4 (left) and F 2

4 (right).

where inv(σ) and exc(σ) denote the number of inversions and exceedances,

respectively, of σ, and ã = max(A− {n}). In particular, FA
n has rank

ρ(FA
n ) =

n2 − a2 − 2n+ 2ã

4
+

{
1 if n ∈ A

0 otherwise,

where a = minA.

The following result is direct consequence of Theorem 1.

Corollary 2 The posets F 0
n , F

1
n , F

n−2
n , and F n

n are the only graded conjugacy

classes of involutions in Sn. Furthermore, the rank function ρ of F 0
n and F 1

n

is given by

ρ(σ) =
inv(σ)− �n/2	

2
,

and the rank function ρ of F n−2
n is given by

ρ(σ) =
inv(σ)− 1

2
.

It is well known that F n−2
n is graded (in fact, it coincides with the root



poset of the Weyl group An−1
∼= Sn). As was mentioned above, the gradedness

of F 0
n was proved by Richardson and Springer, and that of F 1

n was conjectured
by Hultman. These two posets are special cases of a more general construction
from Hultman’s paper [8], which we now briefly describe.

Given a finitely generated Coxeter system (W,S) and an involutive auto-
morphism θ of (W,S) (i.e., a group automorphism θ of W such that θ(S) = S
and θ2 = id), let

ι(θ) = {θ(w−1)w | w ∈ W}

and

I(θ) = {w ∈ W | θ(w) = w−1}

be the sets of twisted identities and twisted involutions, respectively. Clearly,
ι(θ) ⊆ I(θ) ⊆ W . Each subset of W is regarded as a poset with the order
induced by the Bruhat order on W .

If W is finite, it contains a greatest element w0, and θ(w) = w0ww0 defines
an involutive automorphism of (W,S). In this case, ι(θ) is isomorphic to the
dual of [w0], where [w0] is the conjugacy class of w0, and I(θ) is isomorphic
to the dual of I(W ), where I(W ) is the set of involutions in W . When W is
the symmetric group Sn, I(W ) = In, [w0] = F 0

n for n even, and [w0] = F 1
n for

n odd.

Since ι(θ) is graded whenever W is dihedral, as is easily seen, it follows
from [8, Theorem 4.6 and Proposition 6.7] that ι(θ) is graded whenever W is
finite and irreducible, unless W ∼= S2n+1 with θ as above. It was conjectured
by Hultman [8, Conjecture 6.1] that ι(θ) is graded also in this last case. As
we have seen, this is equivalent to F 1

n being graded, which is the case (see
Corollary 2). Hence, we get the following:

Theorem 3 If W is finite, then ι(θ) is graded.

Let us also mention a connection to work by Richardson and Springer
[10,11], who studied a partially ordered set V of orbits of certain symmetric
varieties (depending on, inter alia, a group G). They did so by defining an
order-preserving function ϕ : V → I(θ) ⊆ W (where the Weyl group W
depends on, inter alia, G).

To explain this connection, and for later purposes, define

F≤a
n =

⋃
i≥0

F a−2i
n and F≥a

n =
⋃
i≥0

F a+2i
n ,



and for a2 = a1 + 2m, where m is a positive integer, let

F a1:a2
n = F≥a1

n ∩ F≤a2
n .

Note that F a1:a2
n is not defined for a1 = a2.

It can be seen that I(θ), ι(θ), and F≥a
n for each a ≤ n− 2, are the images

of such functions.

We also give a short new proof of the following result, which was recently
proved by Can, Cherniavsky, and Twelbeck.

Theorem A ([3, Theorem 1]) The poset F 0
n is EL-shellable.

2 A brief sketch of the proof of the main result

In this section, we state a number of lemmas and propositions, from which
Theorem 1 easily follows.

We use several results due to Incitti. Here, we only state the one that we
need in the proof of Theorem 1.

Lemma 4 ([9, Theorem 5.2]) The poset In is graded with rank function ρ
given by

ρ(σ) =
inv(σ) + exc(σ)

2
.

The strategy for proving that a poset FA
n is graded is as follows. We first

prove that FA
n has a maximum and that all its minimal elements have the

same rank in In (see Propositions 6 and 7). We then prove that if σ, τ ∈ FA
n ,

then σ � τ in FA
n if and only if σ � τ in In (one implication is obvious). This

is done in Lemmas 9, 10, and 11. Since In is graded, it thus follows that FA
n

is graded.

In particular, when FA
n ∈ {F≤a

n , F≥a
n }, to prove that σ � τ in In if σ � τ

in FA
n , we assume that σ � τ in In, and consider the increasing and the

decreasing σ-τ -chains in In. We then prove that either the element in the
increasing chain that covers σ, or the element in the decreasing chain that is
covered by τ , has to belong to FA

n . This contradicts the fact that σ � τ in
FA
n .

To prove that a poset FA
n is not graded, we consider an interval [σ, τ ], and

then construct two σ-τ -chains in FA
n of different lengths (see Propositions 13

and 14).

Let us first note the following fact:



Lemma 5 For all n and all A, FA
n is graded if and only if F

A−{n}
n is graded.

In the next two results, we describe the maximal and minimal elements
of FA

n .

Proposition 6 For all n and all A, FA
n has a 1̂. Furthermore, inv(1̂) =

n−a
2
(n+ a− 1) and exc(1̂) = n−a

2
, where a = minA.

Proposition 7 For all n and all A, all minimal elements of FA
n have rank

(n−maxA)/2 in In.

The following lemma will eventually allow us to conclude that F≤a
n , F≥a

n ,
and F a1:a2

n are graded.

Lemma 8 If every cover in FA
n is a cover in In, then FA

n is graded.

Proof This follows from Lemma 4 and Propositions 6 and 7. �

Lemma 9 Let σ � τ in F≤a
n . Then σ � τ in In.

Lemma 10 Let σ � τ in F≥a
n . Then σ � τ in In.

Lemma 11 Let σ � τ in F a1:a2
n . Then σ � τ in In.

The proof of Lemma 10 requires more work than the proof of Lemma 9.
The proof of Lemma 11 is largely a combination of the proofs of Lemmas 9
and 10.

Proposition 12 The posets F≤a
n , F≥a

n , and F a1:a2
n are graded.

Proof This follows from Lemmas 8, 9, 10, and 11. �

In the following two results, we describe the sets A for which FA
n is not

graded.

Proposition 13 If there is an i ∈ [2, n−4] such that i ∈ A but i−2, i+2 /∈ A,
then FA

n is not graded.

The proof is similar to, but easier than, the proof of Proposition 14.

Proposition 14 If there is an i /∈ A and a positive integer m such that

i− 2, i+ 2m ∈ A− {n}, then FA
n is not graded.

Figure 3 illustrates the proof when n = 6.

We are now ready to prove our main result:

Proof of Theorem 1 The first claim follows from Lemma 5 and Proposi-
tions 12, 13, and 14. (It is readily checked that if F

A−{n}
n does not belong to

{∅, F≤a
n , F≥a

n , F a1:a2
n }, then either there is an i ∈ [2, n− 4] such that i ∈ A but
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Figure 3. Two σ-τ -chains in I6 of length 4, and two σ-τ -chains in F
{0,4}
6

of length 4

(right) and length 2 (left); the involutions marked by a • belong to F
{0,4}
6

, and the

involutions marked by a ◦ belong to I6 − F
{0,4}
6

.

i − 2, i + 2 /∈ A, or there are an i /∈ A and a positive integer m such that
i − 2, i + 2m ∈ A− {n}.) The second claim follows from Lemma 4, Proposi-
tion 7, and Lemmas 9, 10, and 11. The third claim follows from the second
claim and Proposition 6. �
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