The Bruhat order on conjugation-invariant sets of involutions in the symmetric group

Mikael Hansson ${ }^{1}$
Department of Mathematics
Linköping University
Linköping, Sweden

Abstract

Let I_{n} be the set of involutions in the symmetric group S_{n}, and for $A \subseteq\{0,1, \ldots, n\}$, let

$$
F_{n}^{A}=\left\{\sigma \in I_{n} \mid \sigma \text { has } a \text { fixed points for some } a \in A\right\}
$$

We give a complete characterisation of the sets A for which F_{n}^{A}, with the order induced by the Bruhat order on S_{n}, is a graded poset. In particular, we prove that $F_{n}^{\{1\}}$ (i.e., the set of involutions with exactly one fixed point) is graded, which settles a conjecture of Hultman in the affirmative. When F_{n}^{A} is graded, we give its rank function. We also give a short new proof of the EL-shellability of $F_{n}^{\{0\}}$ (i.e., the set of fixed point-free involutions), which was recently proved by Can, Cherniavsky, and Twelbeck.
Keywords: Bruhat order, symmetric group, involution, conjugacy class, graded poset, EL-shellability

[^0]
1 Introduction

Partially ordered by the Bruhat order, the symmetric group S_{n} is a graded poset whose rank function is given by the number of inversions, and Edelman [4] proved that it is EL-shellable. Richardson and Springer [10] proved that the set I_{n} of involutions in S_{n} and the set F_{n}^{0} of fixed point-free involutions are graded. Incitti [9] proved that the rank function of I_{n} can be expressed as the average of the number of inversions and the number of exceedances, and that I_{n} is EL-shellable. Hultman [8] studied (in a more general setting, which we shall describe shortly) F_{n}^{0} and F_{n}^{1}, the set of involutions with exactly one fixed point. It follows that F_{n}^{0} is graded and Hultman conjectured that the same is true for F_{n}^{1}. Can, Cherniavsky, and Twelbeck [3] recently proved that F_{n}^{0} is EL-shellable.

We consider the following generalisation. For $a \in\{0,1, \ldots, n\}$, let F_{n}^{a} be the conjugacy class in S_{n} consisting of the involutions with a fixed points, and for $A \subseteq\{0,1, \ldots, n\}$, let

$$
F_{n}^{A}=\bigcup_{a \in A} F_{n}^{a} .
$$

Both I_{n} and F_{n}^{A} are regarded as posets with the order induced by the Bruhat order on S_{n}. Note that

$$
F_{n}^{A}=\left\{\sigma \in I_{n} \mid \sigma \text { has } a \text { fixed points for some } a \in A\right\}
$$

Also note that for all elements in I_{n}, the number of fixed points is congruent to n modulo 2. Hence, we may assume that all members of A have the same parity as n.

Depicted in Figures 1 and 2, are the Hasse diagrams of I_{4}, F_{4}^{0}, and F_{4}^{2}.
Our main result is a complete characterisation of the sets A for which F_{n}^{A} is graded. In particular, we prove that F_{n}^{1} is graded.

Informally, F_{n}^{A} is graded precisely when $A-\{n\}$ is empty or an "interval," which may consist of a single element if it is 0,1 , or $n-2$. The following theorem, which is our main result, makes the above precise. It also gives the rank function of F_{n}^{A} when it exists.
Theorem 1 The poset F_{n}^{A} is graded if and only if $A-\{n\}=\emptyset$ or $A-\{n\}=$ $\left\{a_{1}, a_{1}+2, \ldots, a_{2}\right\}$ with $a_{1} \in\{0,1\}, a_{2}=n-2$, or $a_{2}-a_{1} \geq 2$. Furthermore, when F_{n}^{A} is graded, its rank function ρ is given by

$$
\rho(\sigma)=\frac{\operatorname{inv}(\sigma)+\operatorname{exc}(\sigma)-n+\tilde{a}}{2}+ \begin{cases}1 & \text { if } n \in A \\ 0 & \text { otherwise }\end{cases}
$$

Figure 1. Hasse diagram of I_{4} with the involutions with zero (\circ), two (\bullet), and four (\diamond) fixed points indicated.

Figure 2. Hasse diagrams of F_{4}^{0} (left) and F_{4}^{2} (right).
where $\operatorname{inv}(\sigma)$ and $\operatorname{exc}(\sigma)$ denote the number of inversions and exceedances, respectively, of σ, and $\tilde{a}=\max (A-\{n\})$. In particular, F_{n}^{A} has rank

$$
\rho\left(F_{n}^{A}\right)=\frac{n^{2}-a^{2}-2 n+2 \tilde{a}}{4}+ \begin{cases}1 & \text { if } n \in A \\ 0 & \text { otherwise }\end{cases}
$$

where $a=\min A$.
The following result is direct consequence of Theorem 1.
Corollary 2 The posets $F_{n}^{0}, F_{n}^{1}, F_{n}^{n-2}$, and F_{n}^{n} are the only graded conjugacy classes of involutions in S_{n}. Furthermore, the rank function ρ of F_{n}^{0} and F_{n}^{1} is given by

$$
\rho(\sigma)=\frac{\operatorname{inv}(\sigma)-\lfloor n / 2\rfloor}{2},
$$

and the rank function ρ of F_{n}^{n-2} is given by

$$
\rho(\sigma)=\frac{\operatorname{inv}(\sigma)-1}{2}
$$

It is well known that F_{n}^{n-2} is graded (in fact, it coincides with the root
poset of the Weyl group $A_{n-1} \cong S_{n}$). As was mentioned above, the gradedness of F_{n}^{0} was proved by Richardson and Springer, and that of F_{n}^{1} was conjectured by Hultman. These two posets are special cases of a more general construction from Hultman's paper [8], which we now briefly describe.

Given a finitely generated Coxeter system (W, S) and an involutive automorphism θ of (W, S) (i.e., a group automorphism θ of W such that $\theta(S)=S$ and $\theta^{2}=\mathrm{id}$), let

$$
\iota(\theta)=\left\{\theta\left(w^{-1}\right) w \mid w \in W\right\}
$$

and

$$
\mathfrak{I}(\theta)=\left\{w \in W \mid \theta(w)=w^{-1}\right\}
$$

be the sets of twisted identities and twisted involutions, respectively. Clearly, $\iota(\theta) \subseteq \Im(\theta) \subseteq W$. Each subset of W is regarded as a poset with the order induced by the Bruhat order on W.

If W is finite, it contains a greatest element w_{0}, and $\theta(w)=w_{0} w w_{0}$ defines an involutive automorphism of (W, S). In this case, $\iota(\theta)$ is isomorphic to the dual of $\left[w_{0}\right]$, where $\left[w_{0}\right]$ is the conjugacy class of w_{0}, and $\mathfrak{I}(\theta)$ is isomorphic to the dual of $I(W)$, where $I(W)$ is the set of involutions in W. When W is the symmetric group $S_{n}, I(W)=I_{n},\left[w_{0}\right]=F_{n}^{0}$ for n even, and $\left[w_{0}\right]=F_{n}^{1}$ for n odd.

Since $\iota(\theta)$ is graded whenever W is dihedral, as is easily seen, it follows from [8, Theorem 4.6 and Proposition 6.7] that $\iota(\theta)$ is graded whenever W is finite and irreducible, unless $W \cong S_{2 n+1}$ with θ as above. It was conjectured by Hultman [8, Conjecture 6.1] that $\iota(\theta)$ is graded also in this last case. As we have seen, this is equivalent to F_{n}^{1} being graded, which is the case (see Corollary 2). Hence, we get the following:
Theorem 3 If W is finite, then $\iota(\theta)$ is graded.
Let us also mention a connection to work by Richardson and Springer [10,11], who studied a partially ordered set V of orbits of certain symmetric varieties (depending on, inter alia, a group G). They did so by defining an order-preserving function $\varphi: V \rightarrow \mathfrak{I}(\theta) \subseteq W$ (where the Weyl group W depends on, inter alia, G).

To explain this connection, and for later purposes, define

$$
F_{n}^{\leq a}=\bigcup_{i \geq 0} F_{n}^{a-2 i} \quad \text { and } \quad F_{n}^{\geq a}=\bigcup_{i \geq 0} F_{n}^{a+2 i},
$$

and for $a_{2}=a_{1}+2 m$, where m is a positive integer, let

$$
F_{n}^{a_{1}: a_{2}}=F_{n}^{\geq a_{1}} \cap F_{n}^{\leq a_{2}} .
$$

Note that $F_{n}^{a_{1}: a_{2}}$ is not defined for $a_{1}=a_{2}$.
It can be seen that $\Im(\theta), \iota(\theta)$, and $F_{n}^{\geq a}$ for each $a \leq n-2$, are the images of such functions.

We also give a short new proof of the following result, which was recently proved by Can, Cherniavsky, and Twelbeck.
Theorem A ([3, Theorem 1]) The poset F_{n}^{0} is EL-shellable.

2 A brief sketch of the proof of the main result

In this section, we state a number of lemmas and propositions, from which Theorem 1 easily follows.

We use several results due to Incitti. Here, we only state the one that we need in the proof of Theorem 1.
Lemma 4 ([9, Theorem 5.2]) The poset I_{n} is graded with rank function ρ given by

$$
\rho(\sigma)=\frac{\operatorname{inv}(\sigma)+\operatorname{exc}(\sigma)}{2} .
$$

The strategy for proving that a poset F_{n}^{A} is graded is as follows. We first prove that F_{n}^{A} has a maximum and that all its minimal elements have the same rank in I_{n} (see Propositions 6 and 7). We then prove that if $\sigma, \tau \in F_{n}^{A}$, then $\sigma \triangleleft \tau$ in F_{n}^{A} if and only if $\sigma \triangleleft \tau$ in I_{n} (one implication is obvious). This is done in Lemmas 9, 10, and 11. Since I_{n} is graded, it thus follows that F_{n}^{A} is graded.

In particular, when $F_{n}^{A} \in\left\{F_{n}^{\leq a}, F_{n}^{\geq a}\right\}$, to prove that $\sigma \triangleleft \tau$ in I_{n} if $\sigma \triangleleft \tau$ in F_{n}^{A}, we assume that $\sigma \nless \tau$ in I_{n}, and consider the increasing and the decreasing σ - τ-chains in I_{n}. We then prove that either the element in the increasing chain that covers σ, or the element in the decreasing chain that is covered by τ, has to belong to F_{n}^{A}. This contradicts the fact that $\sigma \triangleleft \tau$ in F_{n}^{A}.

To prove that a poset F_{n}^{A} is not graded, we consider an interval $[\sigma, \tau]$, and then construct two σ - τ-chains in F_{n}^{A} of different lengths (see Propositions 13 and 14).

Let us first note the following fact:

Lemma 5 For all n and all A, F_{n}^{A} is graded if and only if $F_{n}^{A-\{n\}}$ is graded.
In the next two results, we describe the maximal and minimal elements of F_{n}^{A}.
Proposition 6 For all n and all A, F_{n}^{A} has a $\hat{1}$. Furthermore, $\operatorname{inv}(\hat{1})=$ $\frac{n-a}{2}(n+a-1)$ and $\operatorname{exc}(\hat{1})=\frac{n-a}{2}$, where $a=\min A$.
Proposition 7 For all n and all A, all minimal elements of F_{n}^{A} have rank $(n-\max A) / 2$ in I_{n}.

The following lemma will eventually allow us to conclude that $F_{n}^{\leq a}, F_{n}^{\geq a}$, and $F_{n}^{a_{1}: a_{2}}$ are graded.
Lemma 8 If every cover in F_{n}^{A} is a cover in I_{n}, then F_{n}^{A} is graded.
Proof This follows from Lemma 4 and Propositions 6 and 7.
Lemma 9 Let $\sigma \triangleleft \tau$ in $F_{n}^{\leq a}$. Then $\sigma \triangleleft \tau$ in I_{n}.
Lemma 10 Let $\sigma \triangleleft \tau$ in $F_{n}^{\geq a}$. Then $\sigma \triangleleft \tau$ in I_{n}.
Lemma 11 Let $\sigma \triangleleft \tau$ in $F_{n}^{a_{1}: a_{2}}$. Then $\sigma \triangleleft \tau$ in I_{n}.
The proof of Lemma 10 requires more work than the proof of Lemma 9. The proof of Lemma 11 is largely a combination of the proofs of Lemmas 9 and 10.

Proposition 12 The posets $F_{n}^{\leq a}, F_{n}^{\geq a}$, and $F_{n}^{a_{1}: a_{2}}$ are graded.
Proof This follows from Lemmas 8, 9, 10, and 11.
In the following two results, we describe the sets A for which F_{n}^{A} is not graded.

Proposition 13 If there is an $i \in[2, n-4]$ such that $i \in A$ but $i-2, i+2 \notin A$, then F_{n}^{A} is not graded.

The proof is similar to, but easier than, the proof of Proposition 14.
Proposition 14 If there is an $i \notin A$ and a positive integer m such that $i-2, i+2 m \in A-\{n\}$, then F_{n}^{A} is not graded.

Figure 3 illustrates the proof when $n=6$.
We are now ready to prove our main result:
Proof of Theorem 1 The first claim follows from Lemma 5 and Propositions 12,13 , and 14. (It is readily checked that if $F_{n}^{A-\{n\}}$ does not belong to $\left\{\emptyset, F_{n}^{\leq a}, F_{n}^{\geq a}, F_{n}^{a_{1}: a_{2}}\right\}$, then either there is an $i \in[2, n-4]$ such that $i \in A$ but

Figure 3. Two σ - τ-chains in I_{6} of length 4 , and two σ - τ-chains in $F_{6}^{\{0,4\}}$ of length 4 (right) and length 2 (left); the involutions marked by a \bullet belong to $F_{6}^{\{0,4\}}$, and the involutions marked by a \circ belong to $I_{6}-F_{6}^{\{0,4\}}$.
$i-2, i+2 \notin A$, or there are an $i \notin A$ and a positive integer m such that $i-2, i+2 m \in A-\{n\}$.) The second claim follows from Lemma 4, Proposition 7, and Lemmas 9, 10, and 11. The third claim follows from the second claim and Proposition 6.

Acknowledgements

The author thanks Axel Hultman for helpful comments and fruitful discussions.

References

[1] Björner, A., Shellable and Cohen-Macaulay partially ordered sets, Trans. Amer. Math. Soc. 260 (1980), pp. 159-183.
[2] Björner, A. and F. Brenti, "Combinatorics of Coxeter groups," Graduate Texts in Mathematics 231, Springer, New York, 2005.
[3] Can, M. B., Y. Cherniavsky and T. Twelbeck, Lexicographic shellability of the Bruhat-Chevalley order on fixed-point-free involutions, Israel J. Math., to appear .
[4] Edelman, P. H., The Bruhat order of the symmetric group is lexicographically shellable, Proc. Amer. Math. Soc. 82 (1981), pp. 355-358.
[5] Helgason, S., "Differential geometry, Lie groups, and symmetric spaces," Pure and Applied Mathematics 80, Academic Press, New York, 1978.
[6] Hultman, A., Fixed points of involutive automorphisms of the Bruhat order, Adv. Math. 195 (2005), pp. 283-296.
[7] Hultman, A., The combinatorics of twisted involutions in Coxeter groups, Trans. Amer. Math. Soc. 359 (2007), pp. 2787-2798.
[8] Hultman, A., Twisted identities in Coxeter groups, J. Algebraic Combin. 28 (2008), pp. 313-332.
[9] Incitti, F., The Bruhat order on the involutions of the symmetric group, J. Algebraic Combin. 20 (2004), pp. 243-261.
[10] Richardson, R. W. and T. A. Springer, The Bruhat order on symmetric varieties, Geom. Dedicata 35 (1990), pp. 389-436.
[11] Richardson, R. W. and T. A. Springer, Complements to: The Bruhat order on symmetric varieties, Geom. Dedicata 49 (1994), pp. 231-238.
[12] Stanley, R. P., "Enumerative combinatorics. Vol. 1," Cambridge Studies in Advanced Mathematics 49, Cambridge University Press, Cambridge, 1997.

[^0]: ${ }^{1}$ Email: mikael.hansson@liu.se

