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Abstract

Given an n × n array M (n ≥ 7), where each cell is colored in one of two colors,
we give a necessary and sufficient condition for the existence of a partition of M
into n diagonals, each containing at least one cell of each color. As a consequence,
it follows that if each color appears in at least 2n − 1 cells, then such a partition
exists. The proof uses results on completion of partial Latin squares.
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1 Introduction

Let L be an m× n array with m ≤ n. A diagonal in L is a subset of m cells
of L such that no two cells are in the same row or in the same column. For a
natural number k, such that 0 < k ≤ n, a k-coloring of L is an assignment of
a color from a given set of k colors to each cell of L. Given a k-coloring of L,
an l-transversal (l ≤ k) is a diagonal of L in which at least l distinct colors are
represented. A diagonal in a k-colored array L in which all k colors appear is
called here balanced.

A known conjecture of Stein [11] asserts that for any n-coloring of an n×n
array L, where each color appears in n cells, there exists an (n−1)-transversal.
Stein’s conjecture generalizes an earlier conjecture of Ryser and Brualdi [4],
[9] which state that such a transversal exists for any n-coloring in which all
colors in each row and each column are distinct.

A problem related to the Ryser-Brualdi-Stein Conjectures, is the search for
conditions allowing a decomposition of a k-colored m × n array into disjoint
m-transversals. For some conjectures and asymptotic results on the subject
see [1], [2], [5], [6], [7].

In this paper we give a necessary and sufficient condition for a 2-colored
n× n arrays to be partitioned into n disjoint balanced diagonals.

Definition 1.1 We call a subset A of cells in an n × n array improper if
there exists i, j ∈ [n] such that each cell in A lies either in row i or in column
j but not in both. Otherwise, a set is called proper.

Figure 1 illustrates an improper set (marked with x’s).

Fig. 1.

Our main result is the following theorem:

Theorem 1.2 Suppose n ≥ 7 and let L be an n× n array where each cell is



colored red or blue. Then L can be partitioned into n balanced diagonals if and
only if for each color there is a proper set of n cells colored with it.

The proof of Theorem 1.2 relies upon results on completion of partial Latin
squares.

2 Completion of partial Latin squares

A Latin square of order n is an n × n array filled with the symbols 1, . . . , n
so that all symbols in each row and each column are distinct. A diagonal in a
Latin square consisting of equal symbols is called a symbol diagonal. A partial
Latin square of order n and size k is an n × n array in which exactly k cells
are filled. We shall use some results on completing a partial Latin squares to
a Latin square:

Theorem 2.1 (Smetaniuk [10]) A partial Latin square of order n and of size
at most n− 1 can be completed to a Latin square of order n.

Theorem 2.2 (Andersen and Hilton [3]) A partial Latin square of order n
and of size n can be completed to a Latin square of order n, unless it can be
brought by permuting rows and columns and possibly taking the transpose into
one of the following two forms:

• Symbols 1, . . . , x are in cells (1, 1), . . . , (1, x) and symbols x + 1, . . . , n are
in cells (2, x+ 1), . . . , (n− x+ 1, x+ 1).

• Symbols 1, . . . , x are in cells (1, 1), . . . , (1, x) and the symbol x+1 is in cells
(2, x+ 1), (3, x+ 2) . . . , (n− x+ 1, n).

Observation 1 Let L be an n × n array in which at least n − 1 cells are
colored blue. Then, there exists a partition of the cells of L into n disjoint
diagonals, so that at least n− 1 of them contain a blue cell.

Proof. We assign the symbols 1, . . . , n− 1 to the n− 1 blue cells and obtain
a partial Latin square. By Theorem 2.1, we can complete it to a Latin square
in which the symbol diagonals form a partition of L into diagonals, so that at
least n− 1 of them contains a blue cell. �

Observation 2 Let M be a colored n × n array containing a proper subset
of n cells, which are all colored blue. Then, there is a partition of M into n
diagonals, each containing a blue cell.

Proof. Let B be the proper set of blue cells of size n. We assign the symbols
1, . . . , n to the cells of B to obtain a partial Latin square L. Since B is



proper and properness is preserved under permutation of rows and columns
and taking the transpose, it follows from Theorem 2.2 that L can be completed
to a Latin square. The symbol diagonals of this Latin square form a partition
of M into diagonals, each containing a blue cell. �

It can be shown that 2n − 2 blue cells may not ensure the existence of a
decomposition into diagonals, each containing a blue cell. But, since any set
of 2n− 1 cells is proper, and thus contains a proper subset of size n, we have
the following observation:

Observation 3 Let M be a n×n array in which at least 2n−1 cells are colored
blue. Then, there is a partition of M into n diagonals, each containing a blue
cell.

3 Sketch of proof of the main result

For the proof of Theorem 1.2 we apply the following theorem of Ryser [8]:

Theorem 3.1 Let 0 < r, s < n and let A be a partial Latin square of order n
in which cell (i, j) in A is filled if and only if i ≤ r and j ≤ s. Then A can be
completed to a Latin square if and only if N(i) ≥ r + s − n for i = 1, . . . , n,
where N(i) is the number of cells in A that are filled with i.

Let Lb and Lr be the subsets of L consisting of blue and red cells, respec-
tively. Without loss of generality we may assume that |Lb| ≤ |Lr|. If |Lb| < n,
then clearly there is no decomposition of L into balanced diagonals. Suppose
|Lb| ≥ n. If Lb does not contain a proper subset of size n, then Lb is improper.
Suppose Lb is contained in row i and column j, then for any partition of L
into diagonals, the diagonal through L(i, j) will be contained in Lr. Thus, the
condition is necessary.

In order to show that the condition is sufficient we assume, for contradic-
tion, that a decomposition of L into balanced diagonals does not exist.

Here is a sketch of a proof:

(i) We show that if the contradiction assumption holds, then Lb contains
two diagonals T1 and T2 such that |T1 ∩ T2| = 1.

(ii) Suppose T1 ∩ T2 = {cij}. Then, there exists a cell in Lb \ (T1 ∪ T2) which
is not in row i and not in column j.

(iii) We show that L contains an s× t sub-rectangle R1, such that s+ t = n,
s− 1 ≤ t ≤ s+ 1 and |R1 ∩ Lb| ≥ n.
The proof of this assertion utilizes the natural correspondence between



n × n arrays and the complete bipartite graph Kn,n (where a diagonal
corresponds to a matching).

(iv) We show that L contains a p×q sub-rectangle R, such that p+q = n+1,
p− 2 ≤ q ≤ p+ 2, |R ∩ Lb| ≥ n and |R ∩ Lr| ≥ n.
In order to prove this assertion we note that, since |Lb| ≤ |Lr|, the

square L must contain an s× t sub-rectangle R2 such that |R2∩Lr| ≥ n.
If R1 and R2 coincide, we are done. Otherwise, we slide an s× t window,
starting from R1 to R2 (Figure 2), so that in each step we either drop a
row and add a row or drop a column and add a column. At some point we
must move from a rectangle with at least n blue cells to a rectangle with
at least n red cells (assuming n ≥ 7). The union of these two rectangles
is R.

Fig. 2.

(v) We use Hall’s theorem to show that we can fill n blue cells and n red cells
of R with the numbers 1, . . . , n so that each number appears once in a
blue cell and once in a red cell, to form a partial Latin square.

(vi) We use Ryser’s theorem 3.1 to show that R can be completed to a Latin
square, in which all the symbol diagonal are balanced.

Since any set of 2n − 1 cells contains a proper subset of size n we have the
following corollary:

Corollary 3.2 Let L be a 2-colored n × n array with n ≥ 7. If each color
appears in at least 2n − 1 cells, then L can be partitioned into n balanced
diagonals.

The results in this paper originated from questions on edge colorings of
the complete bipartite graph Kn,n. Thus, we formulate Corollary 3.2 in these
terms.

Definition 3.3 Let f : E(Kn,n)→ {1, 2} be a coloring. A matching in M ⊂
E(Kn,n) is called balanced if f−1(i) 	= ∅ for i = 1, 2.



Theorem 3.4 Let n ≥ 7 and let f : E(Kn,n) → {1, 2} be a coloring. If
f−1(i) ≥ 2n − 1 for i = 1, 2, then there exists a partition of E(Kn,n) into n
disjoint balanced matchings.
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