
Nowhere-zero 5-flows

Eckhard Steffen 1

Paderborn Institute for Advanced Studies in Computer Science and Engineering
Paderborn University
Paderborn, Germany

Giuseppe Mazzuoccolo 2

Dipartimento di Scienze Fisiche, Informatiche e Matematiche
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Abstract

We prove that every cyclically 6-edge-connected cubic graph with oddness at most
4 has a nowhere-zero 5-flow. Therefore, a possible minimum counterexample to the
5-flow conjecture has oddness at least 6.
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1 Introduction

An integer nowhere-zero k-flow on a graph G is an assignment of a direction
and a value of {1, . . . , (k−1)} to each edge of G such that the Kirchhoff’s law is
satisfied at every vertex of G. Seymour [4] proved that every bridgeless graph
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has a nowhere-zero 6-flow. So far this is the best approximation to Tutte’s
famous 5-flow conjecture, which is equivalent to its restriction to cubic graphs.

Conjecture 1.1 ([7]) Every bridgeless graph has a nowhere-zero 5-flow.

A snark is a cubic bridgeless graph which is not 3-edge-colorable. A clas-
sical parameter to measure how far a cubic bridgeless graph is from being
3-edge-colorable is its oddness. The oddness, denoted by ω(G), of a bridge-
less cubic graph G is the minimum number of odd circuits in a 2-factor of G.
The following three statements are equivalent: (i) ω(G) = 0; (ii) G is 3-edge-
colorable; (iii) G has a nowhere-zero 4-flow. Hence, a possible counterexample
to the 5-flow-conjecture is a snark. It is easy to see that snarks with oddness
2 have a nowhere-zero 5-flow. If the cyclic connectivity of a cubic graph G is
big in terms of its oddness, then G has a nowhere-zero 5-flow.

Theorem 1.2 ([5]) Let G be a bridgeless cubic graph with cyclic connectivity
k. If k ≥ 5

2
ω(G)− 3, then G has a nowhere-zero 5-flow.

By a result of Kochol [2], it suffices to prove the 5-flow conjecture for
cyclically 6-edge-connected snarks. There are infinitely many cyclically 6-
edge-connected snarks, but no snark with cyclic connectivity greater than 6
is known. The following is our main theorem.

Theorem 1.3 Let G be a cyclically 6-edge-connected cubic graph. If ω(G) ≤
4, then G has a nowhere-zero 5-flow.

We deduce:

Corollary 1.4 If G is a possible minimum counterexample to the 5-flow con-
jecture, then

• G is a cubic graph [4].

• G is cyclically 6-edge connected [2].

• the cyclic connectivity of G is at most 5
2
ω(G)− 4 [5].

• G has girth at least 11 [3].

• G has oddness at least 6.

• G− e has circular flow number 5 for each e ∈ E(G) [6].

2 Sketch of the proof of Theorem 1.3

We combine structural and coloring properties of cubic graphs to prove that
there is no minimum counterexample to the statement of Theorem 1.3. Sup-



pose to the contrary that there is one, say G. We start with a specific 4-edge-
coloring of G. By adding edges between the odd circuits of a 2-factor of G we
construct graphs M1, M2, M3 which have a nowhere-zero 4-flow. From this we
deduce specific partitions of V (G) into two sets A and B with |A| = |B|, which
give us information of the distribution of the colors on critical edge-cuts of G.
It follows, that at least one these partitions of the vertices of G corresponds
to a nowhere-zero 5-flow on G by Theorem 2.1. We give some details in the
following:

2.1 Balanced valuation

A balanced valuation of a graph G is a function f from the vertex set V (G)
into the real numbers, such that |∑v∈X f(v)| ≤ |∂G(X)| for all X ⊆ V (G).
Jaeger proved the following fundamental theorem.

Theorem 2.1 ([1]) Let G be a graph with orientation D and k ≥ 3. Then
G has a nowhere-zero k-flow if and only if there is a balanced valuation f of
G with f(v) = k

k−2
(2d+D(G)(v)− dG(v)), for all v ∈ V (G).

Hence, a cubic graph G has a nowhere-zero 5-flow if and only if there is a
balanced valuation of G with values in {±5

3
}.

2.2 Canonical coloring and flows

Let G be a bridgeless cubic graph, and F2 be a 2-factor of G with odd circuits
C1, . . . , C2t, and even circuits C2t+1, . . . , C2t+l (t ≥ 0, l ≥ 0), and let F1 be the
complementary 1-factor.

A canonical 4-edge-coloring, denoted by c, of G with respect to F2 colors
the edges of F1 with color 1, the edges of the even circuits of F2 with 2 and
3, alternately, and the edges of the odd circuits of F2 with colors 2 and 3
alternately, but one edge which is colored 0. Then, there are precisely 2t
vertices z1, . . . , z2t where color 2 is missing (that is, no edge which is incident
to zi has color 2).

The subgraph which is induced by the edges of colors 1 and 2 is union
of even circuits and t paths Pi of odd length and with z1, . . . , z2t as ends.
Without loss of generality we can assume that Pi has ends z2i−1 and z2i, for
i ∈ {1, . . . , t}.

Let MG be the graph obtained from G by adding two edges fi and f ′
i

between z2i−1 and z2i for i ∈ {1, . . . , t}. Extend the previous edge-coloring
to a proper edge-coloring of MG by coloring f ′

i with color 2 and fi with color
4. Let C ′

1, . . . , C
′
s be the cycles of the 2-factor of MG induced by the edges of



colors 1 and 2 (s ≥ t). In particular, C ′
i is the even circuit obtained by adding

the edge f ′
i to the path Pi, for i ∈ {1, . . . , t}. Finally, for i ∈ {1, . . . , t} let C ′′

i

be the 2-circuit induced by the edges fi and f ′
i . We construct a nowhere-zero

4-flow on MG as follows:

• for i ∈ {1, . . . , 2t + l} let (Di, ϕi) be a nowhere-zero flow on the directed
circuit Ci with ϕi(e) = 2 for all e ∈ E(Ci);

• for i ∈ {1 . . . , s} let (D′
i, ϕ

′
i) be a nowhere-zero flow on the directed circuit

C ′
i with ϕ′

i(e) = 1 for all e ∈ E(C ′
i);

• for i ∈ {1, . . . , t} let (D′′
i , ϕ

′′
i ) be a nowhere-zero flow on the directed circuit

C ′′
i (choose D′′

i such that f ′
i receives the same direction as in D′

i) with
ϕ′′
i (e) = 1 for all e ∈ {fi, f ′

i}.
Then,

(D,ϕ) =
2t+l∑

i=1

(Di, ϕi) +
s∑

i=1

(D′
i, ϕ

′
i) +

t∑

i=1

(D′′
i , ϕ

′′
i )

is the desired nowhere-zero 4-flow on MG.

2.3 Flow partition

By Theorem 2.1, there is a balanced valuation w(v) = 2(2d+D(MG)(v)−dMG
(v))

of MG. It holds that |2d+D(MG)(v)− dMG
(v)| = 1, and hence, w(v) ∈ {±2} for

all vertices v. The vertices of MG, and therefore, of G as well, are partitioned
into two classes A = {v|w(v) = −2} and B = {v|w(v) = 2}. We call the
elements of A (B) the white (black) vertices of G, respectively.

Definition 2.2 Let G be a bridgeless cubic graph and F2 a 2-factor of G.
A partition of V (G) into two classes A and B constructed as above with a
canonical 4-edge-coloring c, the 4-flow (D,ϕ) on MG and the induced balanced
valuation w of MG is called a flow partition of G w.r.t. F2. The partition is
denoted by PG(A,B)(= PG(A,B,F2, c, (D,ϕ), w)).

Lemma 2.3 ([5]) Let G be a bridgeless cubic graph and PG(A,B) be a flow
partition of V (G) which is induced by a canonical nowhere-zero 4-flow with
respect to an edge-coloring c. Let x, y be the two vertices of an edge e. If
e ∈ c−1(1)∪ c−1(2), then x and y belong to different classes, i.e. x ∈ A if and
only if y ∈ B.

From a flow partition PG(A,B)(= PG(A,B,F2, c, (D,ϕ), w)) we easily ob-
tain a flow partition PG(A

′, B′)(= PG(A
′, B′,F2, c, (D

′, ϕ′), w′)) such that the



colors on the vertices of Pi are switched. Let (D′, ϕ′) be the nowhere-zero 4-
flow on MG obtained by using the same 2-factor F2, the same 4-edge-coloring
c of G and the same orientations for all circuits, but for one i ∈ {i, . . . , t} use
opposite orientation of C ′

i and C ′′
i with respect to the one selected in (D,ϕ).

Lemma 2.4 Let G be a bridgeless cubic graph and PG(A,B) be the flow par-
tition which is induced by the nowhere-zero 4-flow (D,ϕ). If PG(A

′, B′) is the
flow partition induced by the nowhere-zero 4-flow (D′, ϕ′), then A \ V (Pi) =
A′ \ V (Pi), B \ V (Pi) = B′ \ V (Pi), A∩ V (Pi) = B′ ∩ V (Pi) and B ∩ V (Pi) =
A′ ∩ V (Pi).

2.4 Critical edge-cuts

For i ∈ {1, 2, 3, 4} let Ci be an odd circuit of a minimum 2-factor of G, and
let zi be the vertex of Ci, where color 2 is missing (w.r.t. the canonical 4-edge-
coloring of G). Let S ⊂ V (G) and a = |S ∩ A|, b = |S ∩ B|. An edge-cut
∂(S) is critical if it separates two subsets of cardinality 2 of {z1, . . . , z4}, and
5
3
|a − b| > |∂G(S)|. We show that at least one of the induced flow partitions

does not contain a critical edge-cut.
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