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Abstract

Motivated by longstanding conjectures regarding decompositions of graphs into
paths and cycles, we prove the following optimal decomposition results for ran-
dom graphs. Let 0 < p < 1 be constant and let G ∼ Gn,p. Let odd(G) be the
number of odd degree vertices in G. Then a.a.s. the following hold:

(i) G can be decomposed into �Δ(G)/2� cycles and a matching of size odd(G)/2.

(ii) G can be decomposed into max{odd(G)/2, �Δ(G)/2�} paths.

(iii) G can be decomposed into �Δ(G)/2� linear forests.

Each of these bounds is best possible. We actually derive (i)–(iii) from ‘quasi-
random’ versions of our results. In that context, we also determine the edge chro-
matic number of a given dense quasirandom graph of even order. For all these
results, our main tool is a result on Hamilton decompositions of robust expanders
by Kühn and Osthus.
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1 Introduction

There are several longstanding and beautiful conjectures on decompositions
of graphs into cycles and/or paths. We consider four of the most well-known
in the setting of dense quasirandom and random graphs: the Erdős-Gallai
conjecture, the Gallai conjecture on path decompositions, the linear arboricity
conjecture as well as the overfull subgraph conjecture.

1.1 Decompositions of random graphs

A classical result of Lovász [18] on decompositions of graphs states that the
edges of any graph on n vertices can be decomposed into at most �n/2� cycles
and paths. Erdős and Gallai [7,8] made the related conjecture that the edges
of every graph G on n vertices can be decomposed into O(n) cycles and edges.
Conlon, Fox and Sudakov [4] recently showed that O(n log log n) cycles and
edges suffice and that the conjecture holds for graphs with linear minimum
degree. They also proved that the conjecture holds a.a.s. for the binomial
random graph G ∼ Gn,p. Korándi, Krivelevich and Sudakov [14] carried out
a more systematic study of the problem for Gn,p: for a large range of p, a.a.s.
Gn,p can be decomposed into n/4 + np/2 + o(n) cycles and edges, which is
asymptotically best possible. They also asked for improved error terms. For
constant p, we will give an exact formula.

A further related conjecture of Gallai (see [18]) states that every connected
graph on n vertices can be decomposed into �n/2� paths. The result of Lovász
mentioned above implies that for every (not necessarily connected) graph n−
1 paths suffice. This has been improved to �2n/3� paths [6,22]. Here we
determine the number of paths in an optimal path decomposition of Gn,p for
constant p. In particular this implies that Gallai’s conjecture holds (with room
to spare) for almost all graphs.

Next, recall that an edge colouring of a graph is a partition of its edge
set into matchings. A matching can be viewed as a forest whose connected
components are edges. As a relaxation of this, a linear forest is a forest
whose components are paths, and the least possible number of linear forests
needed to partition the edge set of a graph G is called the linear arboricity
of G, denoted by la(G). Clearly, in order to cover all edges at any vertex of
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maximum degree, we need at least �Δ(G)/2� linear forests. However, for some
graphs (e.g. complete graphs on an odd number of vertices) we need at least
�(Δ(G)+ 1)/2� linear forests. The following conjecture is known as the linear
arboricity conjecture and can be viewed as an analogue to Vizing’s theorem.

Conjecture 1.1 (Akiyama, Exoo, Harary [1]) For every graph G,
la(G) ≤ �(Δ(G) + 1)/2�.

This is equivalent to the statement that for all d-regular graphs G, la(G) =
�(d + 1)/2�. Alon [2] proved an approximate version of the conjecture for
sufficiently large values of Δ(G). Using his approach, McDiarmid and Reed
[19] confirmed the conjecture for random regular graphs with fixed degree.
We will show that, for a large range of p, a.a.s. the random graph G ∼
Gn,p can be decomposed into �Δ(G)/2� linear forests. Moreover, we use the
recent confirmation [5] of the so-called ‘Hamilton decomposition conjecture’
to deduce that the linear arboricity conjecture holds for large and sufficiently
dense regular graphs.

The following theorem summarises our optimal decomposition results for
dense random graphs. We denote by odd(G) the number of odd degree vertices
in a graph G.

Theorem 1.2 Let 0 < p < 1 be constant and let G ∼ Gn,p. Then a.a.s. the
following hold:

(i) G can be decomposed into �Δ(G)/2� cycles and a matching of size odd(G)/2.

(ii) G can be decomposed into max{odd(G)/2, �Δ(G)/2�} paths.

(iii) G can be decomposed into �Δ(G)/2� linear forests, i.e. la(G) = �Δ(G)/2�.

Clearly, each of the given bounds is best possible. Moreover, as observed
e.g. in [14] for a large range of p, a.a.s. odd(Gn,p) = (1+o(1))n/2. This means
that for fixed p < 1/2, the size of an optimal path decomposition of Gn,p is
determined by the number of odd degree vertices, whereas for p > 1/2, the
maximum degree is the crucial parameter.

A related result of Gao, Pérez-Giménez and Sato [9] determines the ar-
boricity and spanning tree packing number of Gn,p. Optimal results on pack-
ing Hamilton cycles in Gn,p which together cover essentially the whole range
of p were proven in [13,15].

One can extend Theorem 1.2(iii) to the range log117 n
n

≤ p = o(1) by ap-
plying a recent result in [11] on covering Gn,p by Hamilton cycles. It would
be interesting to obtain corresponding exact results also for (i) and (ii). In
particular we believe that the following should hold.



Conjecture 1.3 Suppose p = o(1) and pn

log n
→ ∞. Then a.a.s. G ∼ Gn,p can

be decomposed into odd(G)/2 paths.

By tracking the number of cycles in the decomposition constructed in [14]
and by splitting every such cycle into two paths, one immediately obtains an
approximate version of Conjecture 1.3. Note that this argument does not yield
an approximate version of Theorem 1.2(ii) in the case when p is constant.

1.2 Dense quasirandom graphs

As mentioned earlier, we will deduce Theorem 1.2 from quasirandom versions
of these results. For this we will consider the following one-sided version of
ε-regularity. Let 0 < ε, p < 1. A graph G on n vertices is called lower-(p, ε)-
regular if we have eG(S, T ) ≥ (p − ε)|S||T | for all disjoint S, T ⊆ V (G) with
|S|, |T | ≥ εn.

The next theorem is a quasirandom version of Theorem 1.2(i). Similarly,
we also prove quasirandom versions of parts (ii) and (iii).

Theorem 1.4 For all 0 < p < 1 there exist ε, η > 0 such that for sufficiently
large n, the following holds: Suppose G is a lower-(p, ε)-regular graph on n
vertices. Moreover, assume that Δ(G) − δ(G) ≤ ηn and that G is Eulerian.
Then G can be decomposed into Δ(G)/2 cycles.

This confirms the following conjecture of Hajós (see [18]) for quasirandom
graphs (with room to spare): Every Eulerian graph on n vertices has a de-
composition into �n/2� cycles. (It is easy to see that this conjecture implies
the Erdős-Gallai conjecture.)

We also apply our approach to edge colourings of dense quasirandom
graphs. Recall that in general it is NP-complete to decide whether a graph G
has chromatic index Δ(G) or Δ(G) + 1 (see e.g. [12]). We will show that for
dense quasirandom graphs of even order this decision problem can be solved in
quadratic time without being trivial. For this, call a subgraph H of G overfull
if e(H) > Δ(G)�|H|/2�. Clearly, if G contains any overfull subgraph, then
χ′(G) = Δ(G)+1. The following conjecture is known as the overfull subgraph
conjecture and dates back to 1986.

Conjecture 1.5 (Chetwynd, Hilton [3]) A graph G on n vertices with
Δ(G) > n/3 satisfies χ′(G) = Δ(G) if and only if G contains no overfull
subgraph.

This conjecture implies the 1-factorization conjecture, that every regular
graph of sufficiently high degree and even order can be decomposed into perfect



matchings, which was recently proved for large graphs in [5]. (We refer to [21]
for a more thorough discussion of the area.) We prove the overfull subgraph
conjecture for quasirandom graphs of even order, even if the maximum degree
is smaller than stated in the conjecture, as long as it is linear.

Theorem 1.6 For all 0 < p < 1 there exist ε, η > 0 such that for sufficiently
large n, the following holds: Suppose G is a lower-(p, ε)-regular graph on n
vertices and n is even. Moreover, assume that Δ(G) − δ(G) ≤ ηn. Then
χ′(G) = Δ(G) if and only if G contains no overfull subgraph. Further, there
is a polynomial time algorithm which finds an optimal colouring.

At the first glance, the overfull subgraph criterion seems not very helpful
in terms of time complexity, as it involves all subgraphs of G. (On the other
hand, Niessen [20] proved that in the case when Δ(G) ≥ |G|/2 there is a
polynomial time algorithm which finds all overfull subgraphs.) Our proof of
Theorem 1.6 will actually yield a simple criterion whether G is class 1 or class
2. Moreover, the proof is constructive, thus using appropriate running time
statements for our tools, this yields a polynomial time algorithm which finds
an optimal colouring.

The condition of n being even is essential for our proof as we will colour
Hamilton cycles with two colours each. It would be interesting to obtain a
similar result for graphs of odd order.

Conjecture 1.7 For every 0 < p < 1 there exist ε, η > 0 and n0 ∈ N such
that the following holds. Whenever G is a lower-(p, ε)-regular graph on n ≥ n0

vertices, where n is odd, and Δ(G) − δ(G) ≤ ηn, then χ′(G) = Δ(G) if and
only if

∑
x∈V (G)(Δ(G)− dG(x)) ≥ Δ(G).

Note that the condition
∑

x∈V (G)(Δ(G)−dG(x)) ≥ Δ(G) in Conjecture 1.7
is equivalent to the requirement that G itself is not overfull. Also note that
the corresponding question for Gn,p is easily solved if p does not tend to 0
or 1 too quickly: It is well-known that in this case a.a.s. G ∼ Gn,p satisfies
χ′(G) = Δ(G), which follows from the fact that a.a.s. G has a unique vertex
of maximum degree.

2 Proof overviews

Note that our main results concern almost regular graphs. So the key step is
to partially decompose a given graph (into paths, cycles or appropriate linear
forests) such that the remaining graph is regular. We then apply a result on
Hamilton decompositions of regular robust expanders by Kühn and Osthus



[16,17].

2.1 Proof sketch of Theorem 1.4

If an Eulerian graph G has a decomposition into Δ(G)/2 cycles, then any ver-
tex of maximum degree must be contained in any cycle of the decomposition.
Let Z contain the vertices of maximum degree in G. We want to find a cycle
C that contains Z. A cycle on Z would be desirable, yet too much to hope
for. However, suppose we are given a set of vertices S (not necessarily disjoint
from Z) such that G[S∪Z] is lower-ε-regular and has linear minimum degree.
Then we can find a Hamilton cycle C in G[S ∪Z]. Let G′ be obtained from G
by removing the edges of C. Hence, when going from G to G′, the maximum
degree decreases by two. Let Z ′ contain the vertices of maximum degree in
G′. Again, we aim at finding a cycle C ′ that contains Z ′. In addition, if
δ(G′) < δ(G), then we want to make sure that C ′ does not contain any vertex
of degree δ(G′). We achieve this as follows. We find another set S ′ such that
G[S ′ ∪Z ′] is lower-ε-regular and has linear minimum degree, and critically, S ′

is disjoint from S. Then we can take C ′ to be a Hamilton cycle in G[S ′ ∪Z ′].
In this way we have reduced the maximum degree by 4 and the minimum
degree by at most 2 by removing the edges of two cycles. By repeating this
2-step procedure, we will eventually obtain a dense regular graph which can
be decomposed into Hamilton cycles.

2.2 Proof sketch of Theorem 1.6

Roughly speaking, instead of inductively removing cycles, we aim to remove
paths in order to make our graph regular and then decompose the regular
remainder into Hamilton cycles. We can then simply colour each path with
two colours and, since our graph has even order, each Hamilton cycle with two
colours. We can translate the condition that G does not contain any overfull
subgraph into a simple condition on the degree sequence of G. Together with
a classic result on multigraphic degree sequences by Hakimi [10], we find an
auxiliary multigraph A on V (G) such that dA(x) = Δ(G) − dG(x) for all
x ∈ V (G). If we removed the edges of a Hamilton path from G joining a and b
for every edge ab ∈ E(A), then the leftover would be a regular graph. However,
too many iterations would be needed and we could not ensure that the regular
remainder is still dense enough to apply the Hamilton decomposition result in
[17]. Therefore, we split E(A) into matchings, and for every such matching
M we remove a linear forest from G whose leaves are the vertices covered by
M . In order to actually find these linear forests, we observe that lower-(p, ε)-



regular graphs contain ‘spanning linkages’ for arbitrary pairs of vertices.
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