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Abstract

A hypergraph G = (X,W ) is called d-uniform if each hyperedge w is a set of
d vertices. A 1-factor of a hypergraph G is a set of hyperedges such that every
vertex of the hypergraph is incident to exactly one hyperedge from the set. A 1-
factorization of G is a partition of all hyperedges of the hypergraph into disjoint
1-factors.

The adjacency matrix of a d-uniform hypergraph G is the d-dimensional (0,1)-
matrix of order |X| describing sets of vertices of G such that they make a hyperedge.

We estimate the number of 1-factors of uniform hypergraphs and the number of
1-factorizations of complete uniform hypergraphs by means of permanents of their
adjacency matrices.
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1 Introduction

Let G = (V,E) be a graph on n vertices. The adjacency matrix M(G) of G is
the (0,1)-matrix of order n such that the entry mi,j equals one if and only if
the vertices i and j are adjacent. A 1-factor (perfect matching) of the graph
G is a 1-regular subgraph that has the same vertex set as G. A 1-factorization
of G is a partition of edges of the graph into disjoint 1-factors.

It is wellknown that the number of 1-factors of a balanced bipartite graph
is equal to the permanent of its biadjacency matrix (rows of this matrix cor-
respond to the first partite set, and the columns, to the second). At the same
time, this number is equal to the square root of the permanent of the adjacency
matrix. In [1], Alon and Friedland proved that the number of 1-factors of any
graph is not greater than the square root of the permanent of its adjacency
matrix.

Also, permanents can be used for the estimation of the number of the com-
plete graph 1-factorizations [7]. Let Φ(n) denote the number of 1-factorizations
of the complete graph Kn on n vertices. Then(
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2 ≤ Φ(n) ≤
(
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The lower bound was obtained by Cameron in [4]. This proof requires the van
der Waerden conjecture which was proved by Egorychev in [5] and Falikman
in [6]. The upper bound follows from Bregman’s theorem for the permanent
of (0,1)-matrices [3] and from the result of [1].

There exist several bounds on the number of 1-factorizations of other
graphs. For example, for d-regular bipartite graphs we have the following
result proved by Schrijver in [8]:

Theorem 1.1 Let G be a d-regular bipartite graph on 2n vertices. Then the

number of 1-factorizations of G is not less than
(

d!2

dd

)n

.

Here we estimate the number of 1-factors and 1-factorizations of uniform
hypergraphs by means of permanents of multidimensional matrices.

Let n, d ∈ N, and let Idn = {(α1, . . . , αd) : αi ∈ {1, . . . , n}}. Then a d-
dimensional matrix A of order n is an array (aα)α∈Idn , aα ∈ R.

For a d-dimensional matrix A of order n, denote by D(A) the set of its
diagonals

D(A) =
{
(α1, . . . , αn)|αi ∈ Idn, ∀i �= j ρ(αi, αj) = d

}
,

where ρ is the Hamming distance (the number of positions at which the cor-



responding entries are different). Then the permanent of a matrix A is

perA =
∑
p∈D

∏
α∈p

aα.

Also, recall some definitions on hypergraphs.

The pair G = (X,W ) is called a d-uniform hypergraph on n vertices with
vertex set X and hyperedge set W if |X| = n and each hyperedge w ∈ W
is a set of d vertices. A hypergraph G is called simple if it has no multiple
hyperedges. The degree of a vertex x ∈ X in a hypergraph G is the number
of hyperedges containing x.

A 1-factor of a hypergraph G is a set of hyperedges such that every ver-
tex of the hypergraph is incident to exactly one hyperedge from the set. A
1-factorization of G is a partition of all hyperedges of the hypergraph into
disjoint 1-factors. A d-uniform hypergraph G = (X,W ) in which all vertices
have the degree d is called a d-factor.

The incidence matrix of a hypergraph G is the |X| × |W | matrix (bi,j)
such that bi,j = 1 if the vertex xi and the hyperedge wj are incident, and 0
otherwise. The adjacency matrix M(G) of a d-uniform hypergraph G is the
d-dimensional (0,1)-matrix of order n such that an entry mα equals one if and
only if the vertices with numbers from α make a hyperedge of G.

2 An upper bound on the number of 1-factors of hy-
pergraphs

Let G be a simple d-uniform hypergraph on n vertices. Denote by ϕ(G) the
number of 1-factors of G. It is clear that if there exists a 1-factor of the
hypergraph G, then the number of vertices n is divisible by d. Therefore,
below we will consider only n multiple of d.

It is quite easy to prove that the number of 1-factors of a hypergraph G
is not greater than the permanent of its adjacency matrix. We obtain the
following theorem, that strengthens this bound:

Theorem 2.1 Let G be a simple d-uniform hypergraph on n vertices, and let
d divide n. Define the function μ(n, d) such that μ(n, 2) = μ(n, 3) = 1 for all
integer n and

μ(n, d) =
d!2n

ddnd!n/d



for all d ≥ 4. Then the number of 1-factors of the hypergraph G satisfies

ϕ(G) ≤
(
perM(G)

μ(n, d)

)1/d

.

Corollary 2.2 The number of 1-factors of a simple d-uniform hypergraph is
not greater than the dth root of the permanent of its adjacency matrix:

ϕ(G) ≤ (perM(G))1/d.

Corollary 2.3 Let G = (X,W ) be a simple d-uniform hypergraph on n ver-
tices, and let the vertex xi ∈ X have the degree ri. Then the number of
1-factors of the hypergraph G satisfies

ϕ(G) ≤
(
(d− 1)!n

μ(n, d)

n∏
i=1

ri

)1/d

.

The proof of Theorem 2.1 is based on ideas of paper [1]. Let us give a
sketch of proof of the theorem.

Denote by F(G) the set of all ordered d-tuples of 1-factors of G, where
d-tuples can contain identical 1-factors. It is clear that |F(G)| = ϕd(G).

Let f ∈ F(G) be an ordered d-tuple of 1-factors. Consider the d-uniform
hypergraph F on n vertices such that its hyperedge set is exactly the set of
all hyperedges of the d-tuple f , and the multiplicities of hyperedges from F
and f are the same. By construction, F is a 1-factorable d-factor. Denote by
Φ(F ) the number of all 1-factorizations of F (i.e., the number of all d-tuples
f ∈ F(G) corresponding to F ).

Let w be a hyperedge of a hypergraph G. An arbitrary ordering of vertices
of a hyperedge w is said to be an orientation of w.

An orientation of a hypergraph G is the set of orientations of all its hy-
peredges, where the number of orientations of a hyperedge w equals to its
multiplicity. A proper orientation of a hypergraph G is an orientation such
that there are no vertices having the same position in different orientations
of hyperedges. Let δ(G) be the set of all proper orientations of G, and let
Δ(G) = |δ(G)| be the cardinality of this set.

Let F1 and F2 be 1-factorable d-factors. Note that if the hyperedge sets of
F1 and F2 are the same (taking into account the multiplicity of hyperedges),
then δ(F1) = δ(F2). If the hyperedge sets of F1 and F2 are different, then all
orientations of F1 and F2 will be different too, and δ(F1) ∩ δ(F2) = ∅.

Therefore, all d-tuples from F(G) can be divided into classes such that
d-tuples from one class induce the same d-factor F , the cardinality of each
class equals Φ(F ), and the sets of proper orientations for different classes are



disjoint.

Now we give the key statement for the proof of Theorem 2.1:

Proposition 2.4 Let F be a 1-factorable d-factor. Then

Φ(F ) ≤ Δ(F )

μ(n, d)
.

By this proposition, it is quite easy to prove Theorem 2.1.

Let G be a simple d-uniform hypergraph. Put γ(G) =
⋃

δ(F ), where the
union is over all d-factors F costructed by all f ∈ F(G). Note that the set
of entries of the adjacency matrix M(G), whose indices make a proper orien-
tation from γ(G), forms a unity diagonal in M(G). Consequently, |γ(G)| ≤
perM(G). The following is a simple corollary to Proposition 2.4:

Corollary 2.5 Let G be a simple d-uniform hypergraph on n vertices. Then

|F(G)| ≤ |γ(G)|
μ(n, d)

.

Proof of Theorem 2.1 Recall that ϕd(G) = |F(G)|. By Corollary 2.5,

|F(G)| ≤ |γ(G)|
μ(n,d)

. Also, we know that |γ(G)| is not greater than the perma-

nent of the adjacency matrix M(G). Therefore,

ϕ(G) ≤
(
perM(G)

μ(n, d)

)1/d

.

Let us describe the main ideas of the proof of Proposition 2.4 now. We
state firstly that it is sufficient to consider only connected hypergraphs F .

Lemma 2.6 Suppose that for all connected 1-factorable d-factors F on n ver-
tices we have Φ(F ) ≤ Δ(F )

μ(n,d)
. Then this inequality holds for disconnected hy-

pergraphs too.

In the proof of Proposition 2.4 we use the concept of bipartite representa-
tion of a hypergraph. For a hypergraph G = (X,W ), the bipartite representa-
tion of G is the bipartite graph B(G) = (X,W ;E) with the vertex set X ∪W ,
and E is the edge set; the vertex x ∈ X is adjacent to the vertex w ∈ W in
B(G) if and only if the vertex x is incident to the edge w in G. Note that the
biadjacency matrix of B(G) coincides with the incidence matrix of G.

Any bipartite graph can be considered as a bipartite representation of some
hypergraph. If G is a d-factor, then its bipartite representation B(G) is a d-
regular graph, and each row and each column of the adjacency matrix of B(G)
contains d ones.



At the next step, we associate the numbers of 1-factorizations and proper
orientations of a d-factor F with the numbers of proper decompositions and
proper edge colorings of its bipartite representation.

Let G = (V,E) be a graph. A proper edge coloring with k colors of the
graph G is an assignment of ‘colors’ to the edges of the graph so that no two
adjacent edges have the same color. If G is a d-regular bipartite graph on 2n
vertices, then each proper edge coloring of G with d colors is equivalent to
some 1-factorization of G.

Let B = (X, Y ;E) be a d-regular bipartite graph with the partite sets X
and Y such that |X| = |Y | = n, and let d divide n. A proper decomposition of
the partite set Y is a decomposition of Y into disjoint equinumerous subsets
Y1, . . . , Yd such that the neighborhood of each Yi (the union of neighborhoods
of y over all y ∈ Yi) is equal to X. In other words, each vertex x ∈ X is
adjacent to exactly one vertex from each Yi.

Remind that the d-factor F in Proposition 2.4 may contain multiple hyper-
edges that correspond in B(F ) to the vertices w ∈ W with identical neighbor-
hoods. Suppose that there are k different hyperedges in the hypergraph F , and

let the ith hyperedge have the multiplicity li, i = 1, . . . , k. Put R(F ) =
k∏

i=1

li!.

The following lemmas describe the connection between these structures in
a d-factor F and in its bipartite representation B(F ):

Lemma 2.7 Let F be a 1-factorable d-factor, and let B(F ) be its bipartite
representation. Denote by P (B) the number of proper edge colorings of B(F )
with d colors. Then

Δ(F ) = P (B)/R(F ).

Lemma 2.8 Let F be a 1-factorable d-factor, and let B(F ) be its bipartite
representation. Denote by T (B) the number of proper decompositions of the
partite set W of B(F ). Then

Φ(F ) = T (B)/R(F ).

Therefore, to obtain Proposition 2.4 it is sufficient to prove the next lemma,
which follows from Theorem 1.1:

Lemma 2.9 Let B = (X, Y ;E) be a d-regular connected bipartite graph on

2n vertices, and let d divide n. Then T (B) ≤ P (B)
μ(n,d)

.



3 An upper bound on the number of 1-factorizations of
complete hypergraphs

Denote by Gd
n the complete d-uniform hypergraph on n vertices, that is, the

hyperedge set of Gd
n is the set of all d-element subsets of the vertex set. Let

M(Gd
n) be the adjacency matrix of this graph. Recall that if a hypergraph has

a 1-factor, then n is a multiple of d. By Baranyai’s theorem [2], this condition
is sufficient for the existence of a 1-factorization of complete hypergraphs.
Denote by Φ(n, d) the number of 1-factorizations in the hypergraph Gd

n.

It is not hard to prove the following upper bound on the number of 1-
factorizations:

Proposition 3.1 The number of 1-factorizations of the hypergraph Gd
n satis-

fies

Φ(n, d) ≤
(
(1 + o(1))

nd−1

(d− 1)!

)nd

d!

as n → ∞.

We prove the following theorem, that strengthens this bound:

Theorem 3.2 The number of 1-factorizations of the complete d-uniform hy-
pergraph Gd

n on n vertices satisfies

Φ(n, d) ≤
(
(1 + o(1))

nd−1

μ(n, d)1/ned

)nd

d!

as n → ∞.

Corollary 3.3 If d ≤ 3, then the number of 1-factorizations of the complete
d-uniform hypergraphs G2

n and G3
n on n vertices satisfies

Φ(n, d) ≤
(
(1 + o(1))

nd−1

ed

)nd

d!

as n → ∞.

If d ≥ 4, then the number of 1-factorizations of Gd
n satisfies

Φ(n, d) ≤
(
(1 + o(1))

(
d

e

)d
nd−1

d!2−1/d

)nd

d!

as n → ∞.

Our reasoning for complete hypergraphs is similar to the proof for graphs,
but instead of the result of [1] and Bregman’s theorem we use Theorem 2.1
and the result of [9].
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