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Abstract

A k-uniform family of subsets of [n] is intersecting if it does not contain a disjoint
pair of sets. The study of intersecting families is central to extremal set theory,
dating back to the seminal Erdős–Ko–Rado theorem of 1961 that bounds the largest
such families. A recent trend has been to investigate the structure of set families
with few disjoint pairs.

Friedgut and Regev proved a general removal lemma, showing that when γn ≤
k ≤ (12 − γ)n, a set family with few disjoint pairs can be made intersecting by
removing few sets. Our main contribution in this paper is to provide a simple proof
of a special case of this theorem, when the family has size close to

(
n−1
k−1

)
. However,

our theorem holds for all 2 ≤ k < 1
2n and provides sharp quantitative estimates.

We then use this removal lemma to settle a question of Bollobás, Narayanan
and Raigorodskii regarding the independence number of random subgraphs of the
Kneser graph K(n, k). The Erdős–Ko–Rado theorem shows α(K(n, k)) =

(
n−1
k−1

)
.

For some constant c > 0 and k ≤ cn, we determine the sharp threshold for when
this equality holds for random subgraphs of K(n, k), and provide strong bounds on
the critical probability for k ≤ 1

2(n− 3).
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1 Introduction

Extremal set theory, with its many connections and applications to other
areas, has experienced remarkable growth in recent decades. Inspired by one
of the cornerstones of the field, the celebrated Erdős–Ko–Rado theorem of
1961, a great deal of research concerns intersecting families. We say a family
of sets is intersecting if it does not contain a pair of disjoint sets. In this paper
we derive a stability result for large families that are nearly intersecting, and
apply it to obtain a sparse extension of the Erdős–Ko–Rado theorem. We
begin with a brief survey of relevant results.

1.1 Intersecting families and stability

We restrict our attention to k-uniform families of subsets of [n]. The natural
extremal question is how large such a family can be if it is intersecting. When
n < 2k, there are no two disjoint sets, and hence

(
[n]
k

)
itself is intersecting.

For n ≥ 2k, a natural construction is to take all sets containing some fixed
element i ∈ [n]. This family, called the star with centre i, contains

(
n−1
k−1

)
sets,

and Erdős, Ko and Rado [9] showed this is best possible.

Given the extremal result, great efforts have been made to better under-
stand the general structure of large intersecting families. Hilton and Mil-
ner [17] determined the size of the largest intersecting family that is not a
subset of a star, before Frankl [11] extended this to determine the size of the
largest intersecting family not containing too large a star.

In the years since these initial papers appeared, a series of stability results
have been obtained. Friedgut [12] and Dinur and Friedgut [8] used spectral
techniques to show, provided k ≤ (1

2
− γ)n for some γ > 0, any intersecting

family of size close to
(
n−1
k−1

)
is almost entirely contained in a star. Keevash

and Mubayi [20] and Keevash [19] combined these methods with combinatorial
arguments to provide similar results when k is close to 1

2
n.

However, a recent trend in extremal set theory is to go beyond the Erdős–
Ko–Rado threshold and study set families that may not be intersecting, but
contain few disjoint pairs. Das, Gan and Sudakov [5] studied the supersatu-
ration problem, determining the minimum number of disjoint pairs appearing
in sufficiently sparse k-uniform families. Furthermore, a probabilistic variant
of this supersaturation problem was studied in [6], [18], [22] and [23].

Another direction that has been pursued has been the transferral of the
Erdős–Ko–Rado theorem to the sparse random setting. This study was ini-
tiated by Balogh, Bohman and Mubayi [1], who asked when the largest in-



tersecting subfamily of a random k-uniform hypergraph is the largest star.
Progress on this problem has been made in subsequent papers by Gauy, Hàn
and Oliveira [14], Balogh, Das, Delcourt, Liu and Sharifzadeh [3] and Hamm
and Kahn [15,16]. An alternative version of a sparse Erdős–Ko–Rado theo-
rem, which we shall discuss in greater detail in Section 1.3, was introduced by
Bollobás, Narayanan and Raigorodskii [4].

1.2 Removal lemmas for disjoint pairs

As these new problems go beyond the Erdős–Ko–Rado threshold, we require
more robust forms of stability that apply not only to intersecting families,
but also to families with few disjoint pairs. This motivated the search for a
removal lemma that would show one can remove few sets from any family with
a small number of disjoint pairs to obtain an intersecting family. Friedgut and
Regev [13] proved the first such removal lemma, stated below.

Theorem 1.1 (Friedgut–Regev) Let γ > 0, and let k and n be positive

integers satisfying γn ≤ k ≤ (1
2
− γ)n. Then for every ε > 0 there is a δ > 0

such that any family F ⊂
(
[n]
k

)
with at most δ |F|

(
n−k
k

)
disjoint pairs can be

made intersecting by removing at most ε
(
n−1
k−1

)
sets from F .

Our main contribution is a simple proof of the following removal lemma
for disjoint pairs.

Theorem 1.2 There is an absolute constant C > 0 such that if k and n are

positive integers satisfying 2 ≤ k < 1
2
n, and F ⊂

(
[n]
k

)
is a family of size |F| =

(1− α)
(
n−1
k−1

)
with at most β

(
n−1
k−1

)(
n−k−1
k−1

)
disjoint pairs, where max (|α| , β) ≤

n−2k
(20C)2n

, then there is some star S with |FΔS| ≤ C(α + 2β) n
n−2k

(
n−1
k−1

)
.

Let us compare Theorems 1.1 and 1.2. The original theorem of Friedgut
and Regev requires k to be linear in n but bounded away from 1

2
n. However,

for such k and n, the theorem provides stability for families of all possible
sizes. In particular, their very general theorem applies even when the closest
intersecting family is not a star. In contrast, Theorem 1.2 only applies in the
special case when F will be close to a star, which requires |F| to be close to(
n−1
k−1

)
. However, our theorem holds for a wider range of k.

Theorem 1.2 also gives quantitative control over how close to a star F
must be in terms of its size (parametrised by α), the number of disjoint pairs
(parametrised by β), and how close k is to 1

2
n. By taking β = 0, we obtain a

stability result for intersecting families, and the bounds sharpen those given
by Keevash and Mubayi [20] and Keevash [19].



These bounds are sharp up to the constant. If k is bounded away from 1
2
n,

then one may take a star and add α
(
n−1
k−1

)
sets from another star to obtain a

family of size (1+α)
(
n−1
k−1

)
with α

(
n−1
k−1

)(
n−k−1
k−1

)
disjoint pairs that is α

(
n−1
k−1

)
-far

from a star. On the other hand, if t = n − 2k = o(n), consider the anti-star(
[n−1]

k

)
. This has size

(
1 + t

k

) (
n−1
k−1

)
, contains approximately t

n

(
n−1
k−1

)(
n−k−1
k−1

)
disjoint pairs, and yet is approximately

(
n−1
k−1

)
-far from a star.

1.3 Erdős–Ko–Rado for sparse Kneser subgraphs

We shall apply Theorem 1.2 to a problem of Bollobás, Narayanan and Raig-
orodskii [4] regarding an extension of the Erdős–Ko–Rado theorem to the
sparse random setting. To define the problem, we first need to introduce the
Kneser graph and its connection to the Erdős–Ko–Rado theorem.

Given integers 1 ≤ k ≤ 1
2
n, the Kneser graph K(n, k) is defined on the

vertex set V =
(
[n]
k

)
, with two k-sets F,G ∈

(
[n]
k

)
adjacent in K(n, k) if and

only if F∩G = ∅. Since edges ofK(n, k) denote disjoint pairs in
(
[n]
k

)
, it follows

that independent sets of K(n, k) correspond directly to intersecting families
in

(
[n]
k

)
. Thus the Erdős–Ko–Rado theorem, viewed from the perspective of

the Kneser graph, shows α(K(n, k)) =
(
n−1
k−1

)
when n ≥ 2k.

Bollobás, Narayanan and Raigorodskii [4] transferred the Erdős–Ko–Rado
theorem to the random setting by considering not the entire Kneser graph
K(n, k), but rather random subgraphs of it. Given some probability 0 ≤ p ≤
1, let Kp(n, k) denote the subgraph of K(n, k) where every edge is retained
independently with probability p. As Kp(n, k) ⊆ K(n, k), we clearly have
α(Kp(n, k)) ≥ α(K(n, k)) =

(
n−1
k−1

)
. They then asked for which p we have

equality.

In their paper, they showed the Erdős–Ko–Rado theorem is surprisingly
robust when k = o(n1/3). In other words, we almost surely have α(Kp(n, k)) =(
n−1
k−1

)
even for very small probabilities p (and thus very sparse subgraphs of

K(n, k)). Furthermore, they exhibited a sharp threshold for when this sparse
Erdős–Ko–Rado theorem holds. They conjectured that a similar result should
hold for k = o(n1/2), and possibly even for k = O(n1−δ) for any fixed δ > 0.
For these larger values of k, partial progress was made by Balogh, Bollobás
and Narayanan [2].

By applying Theorem 1.2, we obtain sharper results for large k, as given
in the theorem below.

Theorem 1.3 There is an absolute constant C > 0 such that the following

holds. Let k and n be integers with 1 	 k ≤ 1
2
(n − 3), let ε = ω(k−1),



and set pc =
log(n(n−1

k
))

(n−k−1
k−1 )

. Then, as n → ∞, P
(
α(Kp(n, k)) =

(
n−1
k−1

))
→ 0 if

p ≤ (1− ε)pc.

For k ≤ n
6C

, P
(
α(Kp(n, k)) =

(
n−1
k−1

))
→ 1 if p ≥ (1 + ε)pc, and the stars

are the only maximum independent sets. For k ≤ 1
2
(n−3), the same conclusion

holds for p ≥ 2Cn
n−2kpc.

Theorem 1.3 exhibits a sharp threshold for k ≤ n
6C

, thus extending the
result of Bollobás et. al. [2] to k as large as linear in n. Furthermore,
when k ≤ (1

2
− γ)n, as considered in [2], n

n−2k ≤ (2γ)−1, and so Theorem 1.3
determines the critical probability up to a constant factor. Finally, when k is
close to 1

2
n, we find that the sparse version of the Erdős–Ko–Rado theorem

still holds for very small edge probabilities; when k = 1
2
(n − 3), we almost

surely have α(Kp(n, k)) =
(
n−1
k−1

)
even for p = Ω(n−1).

2 The removal lemma

In this section we shall outline a proof of our version of the removal lemma,
Theorem 1.2. We first introduce the necessary terminology.

Given a family F ⊂
(
[n]
k

)
, the characteristic function f :

(
[n]
k

)
→ {0, 1} of

F is a Boolean function with f(F ) = 1 if and only if F ∈ F . We may embed(
[n]
k

)
⊂ {0, 1}n into the n-dimensional hypercube, and thus think of f as a

function on the k-uniform slice of the cube {(x1, . . . , xn) ∈ {0, 1}n :
∑

i xi =
k}. A function f is affine if f(x1, x2, . . . , xn) = a0 +

∑
i∈[n] aixi for some

constants ai, 0 ≤ i ≤ n. We equip this space with the L2-norm with respect to
the uniform measure on

(
[n]
k

)
, defining ‖f−g‖2 = 1

(n
k
)

∑
F∈([n]

k
) |f(F )− g(F )|2,

and say f and g are ε-close if ‖f − g‖2 ≤ ε.

The first step of our proof is the following lemma, which transfers the prob-
lem into the analytic framework set up above. Its proof requires information
on the spectrum of the Kneser graph provided by Lovász [21].

Lemma 2.1 Let k and n be positive integers satisfying 2 ≤ k < 1
2
n, and let

F ⊂
(
[n]
k

)
be a family of size |F| = (1 − α)

(
n−1
k−1

)
with at most β

(
n−1
k−1

)(
n−k−1
k−1

)
disjoint pairs. If f :

(
[n]
k

)
→ {0, 1} is the characteristic function of F , then

there is some affine function g :
(
[n]
k

)
→ R with ‖f − g‖2 ≤ (α + 2β) k

n−2k .

The above lemma shows that if a set family F is as in the statement of
Theorem 1.2 then its characteristic function can be approximated well by an
affine function, from which we shall deduce that F itself is close to a star. Note
that the characteristic function h of the star with centre i is h(x1, . . . , xn) = xi,



and is thus determined by a single coordinate. A result of Filmus [10] states
that if a Boolean function f :

(
[n]
k

)
→ {0, 1} is close to an affine function,

then it is close to a function determined by at most one coordinate. Putting
everything together we obtain a proof of Theorem 1.2.

Theorem 2.2 (Filmus) For some constant C > 1 the following holds. Sup-

pose 2 ≤ k ≤ 1
2
n and ε < k

128n
. For every Boolean function f :

(
[n]
k

)
→ {0, 1}

that is ε-close to an affine function, there is some set S ⊂ [n] of size |S| ≤

max
(
1, Cn

√
ε

k

)
such that either f or 1− f is (Cε)-close to maxi∈S xi.

For the full details we refer the reader to our paper [7].
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Erdős–Ko–Rado theorem, arXiv:1408.1288.

[5] Das, S., W. Gan and B. Sudakov, The minimum number of disjoint pairs in set

systems and related problems, Combinatorica, to appear.

[6] Das, S., and B. Sudakov, Most probably intersecting hypergraphs, Electron. J.
Comb. 22 (2015), P1.80.

[7] Das, S., and T. Tran, A simple removal lemma for large nearly-intersecting

families, arXiv:1412.7885.

[8] Dinur, I., and E. Friedgut, Intersecting families are essentially contained in

juntas, Combin. Probab. Comput. 18.1-2 (2009), 107–122.
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