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Abstract

A fundamental theorem of Wilson states that, for every graph F', every sufficiently
large F-divisible clique has an F-decomposition. Here a graph G is F-divisible if
e(F) divides e(G) and the greatest common divisor of the degrees of F' divides the
greatest common divisor of the degrees of G, and G has an F-decomposition if the
edges of G can be covered by edge-disjoint copies of F'. We extend this result to
graphs which are allowed to be far from complete: our results imply that every
sufficiently large F-divisible graph G on n vertices with minimum degree at least
(1 —1/(16|F|*) + ¢)n has an F-decomposition. Moreover, every sufficiently large
K3-divisible graph of minimum degree at least 0.956n has a K3-decomposition. Our
result significantly improves previous results towards the long-standing conjecture of
Nash-Williams that every sufficiently large K3-divisible graph with minimum degree
3n/4 has a Ks-decomposition. For certain graphs, we can strengthen the general
bound above. In particular, we obtain the asymptotically correct thresholds of
2n/3 + o(n) for Cy and n/2 + o(n) for even cycles of length at least 6. Our main
contribution is a general method which turns an approximate decomposition into
an exact one.
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1 Introduction

Given a graph F', a graph G has an F'-decomposition (is F-decomposable), if
the edges of G can be covered by edge-disjoint copies of F'. In this paper, we
always consider decomposing a large graph G into edge-disjoint copies of some
small fixed graph F'. The first such result was given by Kirkman [7] in 1847,
who proved that the complete graph K, has a K3-decomposition if and only
if n=1,3 mod 6. To see that n = 1,3 mod 6 is a necessary condition, note
that if G has a K3-decomposition, then the degree of each vertex of GG is even
and e(G) is divisible by 3.

There are similar necessary conditions for the existence of an F’-decomposi-
tion. For a graph G, let gcd(G) be the largest integer dividing the degree of
every vertex of G. Given a graph F', we say that G is F-divisible if e(G) is
divisible by e(F') and ged(G) is divisible by ged(F'). Being F-divisible is a nec-
essary condition for being F-decomposable. However, it is not sufficient: for
example, (s does not have a K3-decomposition. In this terminology, Kirkman
proved that every Kj3-divisible clique has a K3-decomposition. The analogue
of this for general graphs F' instead of K3 was an open problem for a cen-
tury until it was solved by Wilson [12] in 1975. Wilson proved that, for every
graph F', there exist an integer ng = no(F') such that every F-divisible K,
with n > ng has an F-decomposition.

1.1 Decompositions of non-complete graphs

In contrast, it is well known that the problem of deciding whether a gen-
eral graph G has an F-decomposition is NP-complete for every graph F' that
contains a connected component with at least three edges [2]. So a major
question has been to determine the smallest minimum degree that guarantees
an F-decomposition in any sufficiently large F-divisible graph G. Gustavs-
son [4] showed that, for every fixed graph F', there exists ¢ = ¢(F) > 0 and
no = no(F') such that every F-divisible graph G on n > ng vertices with
minimum degree §(G) > (1 — €)n has an F-decomposition. (This proof has
not been without criticism.) In a recent breakthrough, Keevash [6] proved a
hypergraph generalisation of Gustavsson’s theorem. His result actually states
that every sufficiently large dense quasirandom hypergraph has a decomposi-
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tion into cliques (subject to the necessary divisibility conditions). The special
case for complete hypergraphs settles a question regarding the existence of de-
signs going back to the 19th century. Yuster [13] determined the asymptotic
minimum degree threshold which guarantees an F-decomposition in the case
when F' is a bipartite graph with §(F) = 1 (which includes trees). For a sur-
vey regarding F-decomposition of hypergraphs, directed graphs and oriented
graphs, we recommend [14].

Here, we substantially improve existing results when F' is an arbitrary
graph. For F' = K3, Nash-Williams [10] conjectured that every sufficiently
large K3-divisible graph G on n vertices with 6(G) > 3n/4 has a K3-decompo-
sition. This conjecture is still wide open. For a general K, ., the following
(folklore) conjecture is a natural extension of Nash-Williams’s.

Conjecture 1.1 For every r € N with r > 2, there exists an ng = ng(r) such
that every K, 1-divisible graph G on n > ng vertices with 6(G) > (1 —1/(r +
2))n has a K,,1-decomposition.

The following result gives the first significant step towards the bound
given by the above constructions and extends to decompositions into arbi-
trary graphs.

Theorem 1.2 Let F be a graph and let t := max{16x(F)?(x(F)—1)2, 6e(F)}.
Then for each € > 0, there is an ng = no(e, F') such that every F-divisible
graph G onn > ng vertices with 6(G) > (1—1/t+¢)n has an F-decomposition.

Note that, for any F, we have ¢t < 16|F|*. The best previous bound in
this direction is the one given by Gustavsson [4], who claimed that, if F' is
complete, then a minimum degree bound of (1—1073"|F|~%)n suffices. For the
special case of triangles we obtain the following improvement to Theorem 1.2.

Theorem 1.3 There is an ng such that every Ks-divisible graph G onn > ng
vertices with 6(G) > 0.956n has a Ks-decomposition.

1.2 Approximate F-decompositions

Our main contribution is actually a result that turns an ‘approximate’ F'-
decomposition into an exact F-decomposition. Let G be a graph on n vertices.
For a graph F' and n > 0, an n-approximate F-decomposition F of G is a set
of edge-disjoint copies of F covering all but at most nn? edges of G. Note
that a O-approximate F-decomposition is an F-decomposition. For n € N, let
d%(n) be the smallest constant 0 such that every graph G on n vertices with
d(G) > dn has a n-approximate F-decomposition.Let §7. := limsup,,_, ., 07(n)



be the n-approzimate F-decomposition threshold. Clearly 67 > 0% for all
m < ne. Note that there are graphs with lim, 005 = %, and graphs for
which this equality does not hold.

Our main result relates the ‘decomposition threshold’ to the ‘approximate
decomposition threshold” and an additional minimum degree condition for -
regular graphs F'. The dependence on r gives the correct order of magnitude.

Theorem 1.4 Let F' be an r-reqular graph. Then for each € > 0, there exists
an ng = no(e, F') and an n = n(e, F) such that every F-divisible graph G on
n > ng vertices with §(G) > (8 + €)n, where 6 := max{dp, 1 —1/3r}, has an
F-decomposition.

Our proof of Theorem 1.4 can be applied to give better bounds for some
specific choices of F. For example, we prove the following result on cycle
decompositions.

Theorem 1.5 Let ¢ € N with ¢ > 3, and let 64 :== 1/2; 6y :=2/3 if £ > 6 is
even; and &g := 0.956 if £ is odd. Then for each € > 0, there is an no = ng(e, ()
such that every Cy-divisible graph G on n > ng vertices with 6(G) > (dy + €)n
has a Cy-decomposition.

The special case when ¢ = 4 improves a result of Bryant and Cavenagh [1].
For even cycles the value of the constant J, in Theorem 1.5 is the best possible.

2 Sketches of proofs

2.1 Proof of Theorem 1.2 using Theorem 1.4.

The idea of this proof is quite natural. Given a graph F' as in Theorem 1.2,
we find an F-decomposable regular graph R such that both the degree r of
R and the n-approximate decomposition threshold ¢}, are not too large. By
removing a small number of copies of F' from GG, we may assume that G is
also R-divisible. By Theorem 1.4, G has an R-decomposition and so an F-
decomposition, provided 6(G) > max{d},1 — 1/3r}. To obtain the explicit
bound on §(G), we apply a result of Dukes [3] on fractional decompositions in
graphs of large minimum degree together with a result of Haxell and Rodl [5]
relating fractional decompositions to approximate decompositions.

2.2 Proof of Theorem 1.4.

The proof of Theorem 1.4 uses the ‘absorbing’ approach. This method was
first used for finding Kj3-factors (that is, a spanning union of vertex-disjoint



copies of K3) by Krivelevich [8] and for finding Hamilton cycles in hypergraphs
by Rédl, Rucinski and Szemerédi [11]. An absorbing approach for finding
decompositions was first used by Kiihn and Osthus [9].

More precisely, the basic idea behind the proof of Theorem 1.4 can be
described as follows. Let G be a graph as in Theorem 1.4. Suppose that
we can find a sparse F-divisible subgraph A* of G which is an F-absorber
in the following sense: A* U H* has an F-decomposition whenever H* is a
sparse F'-divisible graph on V(G) which is edge-disjoint from A*. Let G’ be
the subgraph of G remaining after removing the edges of A*. Since A* is
sparse, §(G') > (0} +¢/2)n. By the definition of §%, G’ has an n-approximate
F-decomposition F. Let H* := G’ — [JF be the leftover. Note that H* is
also F-divisible. Since A* U H* has an F-decomposition, so does G.

Unfortunately, this naive approach fails for the following reason: we have
no control on the leftover H*. More precisely, the natural way to obtain A*
would be to construct it as the edge-disjoint union of graphs A such that
each such A has an F-decomposition and, for each possible leftover graph H*,
there is a distinct A so that A U H* has an F-decomposition. However, even
if H* = (g, the number of possibilities for H* is at least (Z) So we have no
hope of finding all the required graphs A in G (and thus to construct A*).
To overcome this problem, we reduce the number of possible configurations of
H* (in turn reducing the number of graphs A required) as follows. Roughly
speaking, we iteratively find approximate decompositions of the leftover so
that eventually our final leftover H* only has O(n) edges whose location is
very constrained—so one can view this step as finding a ‘near optimal’ F-
decomposition.

To illustrate this, suppose that m € N is bounded and n is divisible by m.
Let P :={V1,...,V,} be a partition of V(G) into parts of size m (so ¢ = n/m).
We further suppose that H* is a vertex-disjoint union of F-divisible graphs
HY, ..., Hy such that V(H}) C V; for each i. Hence to construct A*, we only
need to find one A for each possible H}. For a fixed ¢, there are at most
2('%) = o) possible configurations of H}. Since m is bounded, in order to
construct A* we would only need to find q2(7§) =2(%)p /m different A.

We now describe in more detail the iterative approach which achieves the
above setting. Recall that G’ is the subgraph of G remaining after removing
all the edges of A*. Since A* is sparse, GG’ has roughly the same properties
as G. Our new objective is to find edge-disjoint copies of F' covering all edges
of G’ that do not lie entirely within V; for some i. Since each V; has bounded
size, these edge-disjoint copies of F’ will cover all but at most a linear number



of edges of GG'. As indicated above, we use an iterative approach to achieve
this. We proceed as follows. Let & € N. Let P; be an equipartition of V(G)
into k parts, and let Gy be the k-partite subgraph of G’ induced by P; (here
k is large but bounded). Suppose that we can cover the edges of Gy by copies
of F' which use only a small proportion of the edges not in G;. Call the
leftover graph H;. Let P, be an equipartition of V(G) into k? parts obtained
by dividing each V € P into k parts. Let G5 be the k?-partite subgraph
of H; induced by P,. Each component of Gy will form a k-partite graph lying
within some V' € P;. So by applying the same argument to each component of
G5 in turn and iterating log,(n/m) times we obtain an equipartition P = P,
of V(G) with |V| = m for each V' € P such that all edges of G’ that do not
lie entirely within some V' € P can be covered by edge-disjoint copies of F'.
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