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Abstract

A fundamental theorem of Wilson states that, for every graph F , every sufficiently
large F -divisible clique has an F -decomposition. Here a graph G is F -divisible if
e(F ) divides e(G) and the greatest common divisor of the degrees of F divides the
greatest common divisor of the degrees of G, and G has an F -decomposition if the
edges of G can be covered by edge-disjoint copies of F . We extend this result to
graphs which are allowed to be far from complete: our results imply that every
sufficiently large F -divisible graph G on n vertices with minimum degree at least
(1 − 1/(16|F |4) + ε)n has an F -decomposition. Moreover, every sufficiently large
K3-divisible graph of minimum degree at least 0.956n has a K3-decomposition. Our
result significantly improves previous results towards the long-standing conjecture of
Nash-Williams that every sufficiently large K3-divisible graph with minimum degree
3n/4 has a K3-decomposition. For certain graphs, we can strengthen the general
bound above. In particular, we obtain the asymptotically correct thresholds of
2n/3 + o(n) for C4 and n/2 + o(n) for even cycles of length at least 6. Our main
contribution is a general method which turns an approximate decomposition into
an exact one.
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1 Introduction

Given a graph F , a graph G has an F -decomposition (is F -decomposable), if
the edges of G can be covered by edge-disjoint copies of F . In this paper, we
always consider decomposing a large graph G into edge-disjoint copies of some
small fixed graph F . The first such result was given by Kirkman [7] in 1847,
who proved that the complete graph Kn has a K3-decomposition if and only
if n ≡ 1, 3 mod 6. To see that n ≡ 1, 3 mod 6 is a necessary condition, note
that if G has a K3-decomposition, then the degree of each vertex of G is even
and e(G) is divisible by 3.

There are similar necessary conditions for the existence of an F -decomposi-
tion. For a graph G, let gcd(G) be the largest integer dividing the degree of
every vertex of G. Given a graph F , we say that G is F -divisible if e(G) is
divisible by e(F ) and gcd(G) is divisible by gcd(F ). Being F -divisible is a nec-
essary condition for being F -decomposable. However, it is not sufficient: for
example, C6 does not have a K3-decomposition. In this terminology, Kirkman
proved that every K3-divisible clique has a K3-decomposition. The analogue
of this for general graphs F instead of K3 was an open problem for a cen-
tury until it was solved by Wilson [12] in 1975. Wilson proved that, for every
graph F , there exist an integer n0 = n0(F ) such that every F -divisible Kn

with n ≥ n0 has an F -decomposition.

1.1 Decompositions of non-complete graphs

In contrast, it is well known that the problem of deciding whether a gen-
eral graph G has an F -decomposition is NP-complete for every graph F that
contains a connected component with at least three edges [2]. So a major
question has been to determine the smallest minimum degree that guarantees
an F -decomposition in any sufficiently large F -divisible graph G. Gustavs-
son [4] showed that, for every fixed graph F , there exists ε = ε(F ) > 0 and
n0 = n0(F ) such that every F -divisible graph G on n ≥ n0 vertices with
minimum degree δ(G) ≥ (1 − ε)n has an F -decomposition. (This proof has
not been without criticism.) In a recent breakthrough, Keevash [6] proved a
hypergraph generalisation of Gustavsson’s theorem. His result actually states
that every sufficiently large dense quasirandom hypergraph has a decomposi-
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tion into cliques (subject to the necessary divisibility conditions). The special
case for complete hypergraphs settles a question regarding the existence of de-
signs going back to the 19th century. Yuster [13] determined the asymptotic
minimum degree threshold which guarantees an F -decomposition in the case
when F is a bipartite graph with δ(F ) = 1 (which includes trees). For a sur-
vey regarding F -decomposition of hypergraphs, directed graphs and oriented
graphs, we recommend [14].

Here, we substantially improve existing results when F is an arbitrary
graph. For F = K3, Nash-Williams [10] conjectured that every sufficiently
large K3-divisible graph G on n vertices with δ(G) ≥ 3n/4 has a K3-decompo-
sition. This conjecture is still wide open. For a general Kr+1, the following
(folklore) conjecture is a natural extension of Nash-Williams’s.

Conjecture 1.1 For every r ∈ N with r ≥ 2, there exists an n0 = n0(r) such
that every Kr+1-divisible graph G on n ≥ n0 vertices with δ(G) ≥ (1− 1/(r +
2))n has a Kr+1-decomposition.

The following result gives the first significant step towards the bound
given by the above constructions and extends to decompositions into arbi-
trary graphs.

Theorem 1.2 Let F be a graph and let t := max{16χ(F )2(χ(F )−1)2, 6e(F )}.
Then for each ε > 0, there is an n0 = n0(ε, F ) such that every F -divisible
graph G on n ≥ n0 vertices with δ(G) ≥ (1−1/t+ε)n has an F -decomposition.

Note that, for any F , we have t ≤ 16|F |4. The best previous bound in
this direction is the one given by Gustavsson [4], who claimed that, if F is
complete, then a minimum degree bound of (1−10−37|F |−94)n suffices. For the
special case of triangles we obtain the following improvement to Theorem 1.2.

Theorem 1.3 There is an n0 such that every K3-divisible graph G on n ≥ n0

vertices with δ(G) ≥ 0.956n has a K3-decomposition.

1.2 Approximate F -decompositions

Our main contribution is actually a result that turns an ‘approximate’ F -
decomposition into an exact F -decomposition. Let G be a graph on n vertices.
For a graph F and η ≥ 0, an η-approximate F -decomposition F of G is a set
of edge-disjoint copies of F covering all but at most ηn2 edges of G. Note
that a 0-approximate F -decomposition is an F -decomposition. For n ∈ N, let
δηF (n) be the smallest constant δ such that every graph G on n vertices with
δ(G) ≥ δn has a η-approximate F -decomposition.Let δηF := lim supn→∞ δηF (n)



be the η-approximate F -decomposition threshold. Clearly δη1F ≥ δη2F for all
η1 ≤ η2. Note that there are graphs with limη→0 δ

η
F = δ0F , and graphs for

which this equality does not hold.

Our main result relates the ‘decomposition threshold’ to the ‘approximate
decomposition threshold’ and an additional minimum degree condition for r-
regular graphs F . The dependence on r gives the correct order of magnitude.

Theorem 1.4 Let F be an r-regular graph. Then for each ε > 0, there exists
an n0 = n0(ε, F ) and an η = η(ε, F ) such that every F -divisible graph G on
n ≥ n0 vertices with δ(G) ≥ (δ + ε)n, where δ := max{δηF , 1 − 1/3r}, has an
F -decomposition.

Our proof of Theorem 1.4 can be applied to give better bounds for some
specific choices of F . For example, we prove the following result on cycle
decompositions.

Theorem 1.5 Let � ∈ N with � ≥ 3, and let δ4 := 1/2; δ� := 2/3 if � ≥ 6 is
even; and δ� := 0.956 if � is odd. Then for each ε > 0, there is an n0 = n0(ε, �)
such that every C�-divisible graph G on n ≥ n0 vertices with δ(G) ≥ (δ� + ε)n
has a C�-decomposition.

The special case when � = 4 improves a result of Bryant and Cavenagh [1].
For even cycles the value of the constant δ� in Theorem 1.5 is the best possible.

2 Sketches of proofs

2.1 Proof of Theorem 1.2 using Theorem 1.4.

The idea of this proof is quite natural. Given a graph F as in Theorem 1.2,
we find an F -decomposable regular graph R such that both the degree r of
R and the η-approximate decomposition threshold δηR are not too large. By
removing a small number of copies of F from G, we may assume that G is
also R-divisible. By Theorem 1.4, G has an R-decomposition and so an F -
decomposition, provided δ(G) ≥ max{δηR, 1 − 1/3r}. To obtain the explicit
bound on δ(G), we apply a result of Dukes [3] on fractional decompositions in
graphs of large minimum degree together with a result of Haxell and Rödl [5]
relating fractional decompositions to approximate decompositions.

2.2 Proof of Theorem 1.4.

The proof of Theorem 1.4 uses the ‘absorbing’ approach. This method was
first used for finding K3-factors (that is, a spanning union of vertex-disjoint



copies ofK3) by Krivelevich [8] and for finding Hamilton cycles in hypergraphs
by Rödl, Ruciński and Szemerédi [11]. An absorbing approach for finding
decompositions was first used by Kühn and Osthus [9].

More precisely, the basic idea behind the proof of Theorem 1.4 can be
described as follows. Let G be a graph as in Theorem 1.4. Suppose that
we can find a sparse F -divisible subgraph A∗ of G which is an F -absorber
in the following sense: A∗ ∪ H∗ has an F -decomposition whenever H∗ is a
sparse F -divisible graph on V (G) which is edge-disjoint from A∗. Let G′ be
the subgraph of G remaining after removing the edges of A∗. Since A∗ is
sparse, δ(G′) ≥ (δηF + ε/2)n. By the definition of δηF , G

′ has an η-approximate
F -decomposition F . Let H∗ := G′ − ⋃F be the leftover. Note that H∗ is
also F -divisible. Since A∗ ∪H∗ has an F -decomposition, so does G.

Unfortunately, this näıve approach fails for the following reason: we have
no control on the leftover H∗. More precisely, the natural way to obtain A∗

would be to construct it as the edge-disjoint union of graphs A such that
each such A has an F -decomposition and, for each possible leftover graph H∗,
there is a distinct A so that A ∪H∗ has an F -decomposition. However, even
if H∗ = C6, the number of possibilities for H∗ is at least

(
n
6

)
. So we have no

hope of finding all the required graphs A in G (and thus to construct A∗).
To overcome this problem, we reduce the number of possible configurations of
H∗ (in turn reducing the number of graphs A required) as follows. Roughly
speaking, we iteratively find approximate decompositions of the leftover so
that eventually our final leftover H∗ only has O(n) edges whose location is
very constrained—so one can view this step as finding a ‘near optimal’ F -
decomposition.

To illustrate this, suppose that m ∈ N is bounded and n is divisible by m.
Let P := {V1, . . . , Vq} be a partition of V (G) into parts of sizem (so q = n/m).
We further suppose that H∗ is a vertex-disjoint union of F -divisible graphs
H∗

1 , . . . , H
∗
q such that V (H∗

i ) ⊆ Vi for each i. Hence to construct A∗, we only
need to find one A for each possible H∗

i . For a fixed i, there are at most

2(
|Vi|
2 ) = 2(

m
2 ) possible configurations of H∗

i . Since m is bounded, in order to

construct A∗ we would only need to find q2(
m
2 ) = 2(

m
2 )n/m different A.

We now describe in more detail the iterative approach which achieves the
above setting. Recall that G′ is the subgraph of G remaining after removing
all the edges of A∗. Since A∗ is sparse, G′ has roughly the same properties
as G. Our new objective is to find edge-disjoint copies of F covering all edges
of G′ that do not lie entirely within Vi for some i. Since each Vi has bounded
size, these edge-disjoint copies of F will cover all but at most a linear number



of edges of G′. As indicated above, we use an iterative approach to achieve
this. We proceed as follows. Let k ∈ N. Let P1 be an equipartition of V (G)
into k parts, and let G1 be the k-partite subgraph of G′ induced by P1 (here
k is large but bounded). Suppose that we can cover the edges of G1 by copies
of F which use only a small proportion of the edges not in G1. Call the
leftover graph H1. Let P2 be an equipartition of V (G) into k2 parts obtained
by dividing each V ∈ P1 into k parts. Let G2 be the k2-partite subgraph
of H1 induced by P2. Each component of G2 will form a k-partite graph lying
within some V ∈ P1. So by applying the same argument to each component of
G2 in turn and iterating logk(n/m) times we obtain an equipartition P = P�

of V (G) with |V | = m for each V ∈ P such that all edges of G′ that do not
lie entirely within some V ∈ P can be covered by edge-disjoint copies of F .
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