

ScienceDirect

Electronic Notes in DISCRETE MATHEMATICS

www.elsevier.com/locate/endm

Edge-decompositions of graphs with high minimum degree

Ben Barber, Daniela Kühn, Allan Lo, Deryk Osthus ^{1,2}

School of Mathematics University of Birmingham Birmingham B15 2TT, United Kingdom

Abstract

A fundamental theorem of Wilson states that, for every graph F, every sufficiently large F-divisible clique has an F-decomposition. Here a graph G is F-divisible if e(F) divides e(G) and the greatest common divisor of the degrees of F divides the greatest common divisor of the degrees of G, and G has an F-decomposition if the edges of G can be covered by edge-disjoint copies of F. We extend this result to graphs which are allowed to be far from complete: our results imply that every sufficiently large F-divisible graph G on n vertices with minimum degree at least $(1-1/(16|F|^4)+\varepsilon)n$ has an F-decomposition. Moreover, every sufficiently large K_3 -divisible graph of minimum degree at least 0.956n has a K_3 -decomposition. Our result significantly improves previous results towards the long-standing conjecture of Nash-Williams that every sufficiently large K_3 -divisible graph with minimum degree 3n/4 has a K_3 -decomposition. For certain graphs, we can strengthen the general bound above. In particular, we obtain the asymptotically correct thresholds of 2n/3 + o(n) for C_4 and n/2 + o(n) for even cycles of length at least 6. Our main contribution is a general method which turns an approximate decomposition into an exact one.

Keywords: minimum degree, edge decomposition

1 Introduction

Given a graph F, a graph G has an F-decomposition (is F-decomposable), if the edges of G can be covered by edge-disjoint copies of F. In this paper, we always consider decomposing a large graph G into edge-disjoint copies of some small fixed graph F. The first such result was given by Kirkman [7] in 1847, who proved that the complete graph K_n has a K_3 -decomposition if and only if $n \equiv 1, 3 \mod 6$. To see that $n \equiv 1, 3 \mod 6$ is a necessary condition, note that if G has a K_3 -decomposition, then the degree of each vertex of G is even and e(G) is divisible by 3.

There are similar necessary conditions for the existence of an F-decomposition. For a graph G, let gcd(G) be the largest integer dividing the degree of every vertex of G. Given a graph F, we say that G is F-divisible if e(G) is divisible by e(F) and gcd(G) is divisible by gcd(F). Being F-divisible is a necessary condition for being F-decomposable. However, it is not sufficient: for example, C_6 does not have a K_3 -decomposition. In this terminology, Kirkman proved that every K_3 -divisible clique has a K_3 -decomposition. The analogue of this for general graphs F instead of K_3 was an open problem for a century until it was solved by Wilson [12] in 1975. Wilson proved that, for every graph F, there exist an integer $n_0 = n_0(F)$ such that every F-divisible K_n with $n \geq n_0$ has an F-decomposition.

1.1 Decompositions of non-complete graphs

d.osthus@bham.ac.uk

In contrast, it is well known that the problem of deciding whether a general graph G has an F-decomposition is NP-complete for every graph F that contains a connected component with at least three edges [2]. So a major question has been to determine the smallest minimum degree that guarantees an F-decomposition in any sufficiently large F-divisible graph G. Gustavsson [4] showed that, for every fixed graph F, there exists $\epsilon = \epsilon(F) > 0$ and $n_0 = n_0(F)$ such that every F-divisible graph G on $n \geq n_0$ vertices with minimum degree $\delta(G) \geq (1 - \epsilon)n$ has an F-decomposition. (This proof has not been without criticism.) In a recent breakthrough, Keevash [6] proved a hypergraph generalisation of Gustavsson's theorem. His result actually states that every sufficiently large dense quasirandom hypergraph has a decomposi-

¹ The research leading to these results was partially supported by the European Research Council under the European Union's Seventh Framework Programme (FP/2007-2013) / ERC Grant Agreement n. 258345 (B. Barber, D. Kühn and A. Lo) and 306349 (D. Osthus).

² Email: b.a.barber@bham.ac.uk, d.kuhn@bham.ac.uk, s.a.lo@bham.ac.uk,

tion into cliques (subject to the necessary divisibility conditions). The special case for complete hypergraphs settles a question regarding the existence of designs going back to the 19th century. Yuster [13] determined the asymptotic minimum degree threshold which guarantees an F-decomposition in the case when F is a bipartite graph with $\delta(F) = 1$ (which includes trees). For a survey regarding F-decomposition of hypergraphs, directed graphs and oriented graphs, we recommend [14].

Here, we substantially improve existing results when F is an arbitrary graph. For $F = K_3$, Nash-Williams [10] conjectured that every sufficiently large K_3 -divisible graph G on n vertices with $\delta(G) \geq 3n/4$ has a K_3 -decomposition. This conjecture is still wide open. For a general K_{r+1} , the following (folklore) conjecture is a natural extension of Nash-Williams's.

Conjecture 1.1 For every $r \in \mathbb{N}$ with $r \geq 2$, there exists an $n_0 = n_0(r)$ such that every K_{r+1} -divisible graph G on $n \geq n_0$ vertices with $\delta(G) \geq (1 - 1/(r + 2))n$ has a K_{r+1} -decomposition.

The following result gives the first significant step towards the bound given by the above constructions and extends to decompositions into arbitrary graphs.

Theorem 1.2 Let F be a graph and let $t := \max\{16\chi(F)^2(\chi(F)-1)^2, 6e(F)\}$. Then for each $\epsilon > 0$, there is an $n_0 = n_0(\epsilon, F)$ such that every F-divisible graph G on $n \ge n_0$ vertices with $\delta(G) \ge (1-1/t+\varepsilon)n$ has an F-decomposition.

Note that, for any F, we have $t \leq 16|F|^4$. The best previous bound in this direction is the one given by Gustavsson [4], who claimed that, if F is complete, then a minimum degree bound of $(1-10^{-37}|F|^{-94})n$ suffices. For the special case of triangles we obtain the following improvement to Theorem 1.2.

Theorem 1.3 There is an n_0 such that every K_3 -divisible graph G on $n \ge n_0$ vertices with $\delta(G) \ge 0.956n$ has a K_3 -decomposition.

1.2 Approximate F-decompositions

Our main contribution is actually a result that turns an 'approximate' F-decomposition into an exact F-decomposition. Let G be a graph on n vertices. For a graph F and $\eta \geq 0$, an η -approximate F-decomposition \mathcal{F} of G is a set of edge-disjoint copies of F covering all but at most ηn^2 edges of G. Note that a 0-approximate F-decomposition is an F-decomposition. For $n \in \mathbb{N}$, let $\delta_F^{\eta}(n)$ be the smallest constant δ such that every graph G on n vertices with $\delta(G) \geq \delta n$ has a η -approximate F-decomposition. Let $\delta_F^{\eta} := \limsup_{n \to \infty} \delta_F^{\eta}(n)$

be the η -approximate F-decomposition threshold. Clearly $\delta_F^{\eta_1} \geq \delta_F^{\eta_2}$ for all $\eta_1 \leq \eta_2$. Note that there are graphs with $\lim_{\eta \to 0} \delta_F^{\eta} = \delta_F^0$, and graphs for which this equality does not hold.

Our main result relates the 'decomposition threshold' to the 'approximate decomposition threshold' and an additional minimum degree condition for r-regular graphs F. The dependence on r gives the correct order of magnitude.

Theorem 1.4 Let F be an r-regular graph. Then for each $\epsilon > 0$, there exists an $n_0 = n_0(\epsilon, F)$ and an $\eta = \eta(\epsilon, F)$ such that every F-divisible graph G on $n \ge n_0$ vertices with $\delta(G) \ge (\delta + \epsilon)n$, where $\delta := \max\{\delta_F^{\eta}, 1 - 1/3r\}$, has an F-decomposition.

Our proof of Theorem 1.4 can be applied to give better bounds for some specific choices of F. For example, we prove the following result on cycle decompositions.

Theorem 1.5 Let $\ell \in \mathbb{N}$ with $\ell \geq 3$, and let $\delta_4 := 1/2$; $\delta_\ell := 2/3$ if $\ell \geq 6$ is even; and $\delta_\ell := 0.956$ if ℓ is odd. Then for each $\epsilon > 0$, there is an $n_0 = n_0(\epsilon, \ell)$ such that every C_ℓ -divisible graph G on $n \geq n_0$ vertices with $\delta(G) \geq (\delta_\ell + \epsilon)n$ has a C_ℓ -decomposition.

The special case when $\ell=4$ improves a result of Bryant and Cavenagh [1]. For even cycles the value of the constant δ_{ℓ} in Theorem 1.5 is the best possible.

2 Sketches of proofs

2.1 Proof of Theorem 1.2 using Theorem 1.4.

The idea of this proof is quite natural. Given a graph F as in Theorem 1.2, we find an F-decomposable regular graph R such that both the degree r of R and the η -approximate decomposition threshold δ_R^{η} are not too large. By removing a small number of copies of F from G, we may assume that G is also R-divisible. By Theorem 1.4, G has an R-decomposition and so an F-decomposition, provided $\delta(G) \geq \max\{\delta_R^{\eta}, 1-1/3r\}$. To obtain the explicit bound on $\delta(G)$, we apply a result of Dukes [3] on fractional decompositions in graphs of large minimum degree together with a result of Haxell and Rödl [5] relating fractional decompositions to approximate decompositions.

2.2 Proof of Theorem 1.4.

The proof of Theorem 1.4 uses the 'absorbing' approach. This method was first used for finding K_3 -factors (that is, a spanning union of vertex-disjoint

copies of K_3) by Krivelevich [8] and for finding Hamilton cycles in hypergraphs by Rödl, Ruciński and Szemerédi [11]. An absorbing approach for finding decompositions was first used by Kühn and Osthus [9].

More precisely, the basic idea behind the proof of Theorem 1.4 can be described as follows. Let G be a graph as in Theorem 1.4. Suppose that we can find a sparse F-divisible subgraph A^* of G which is an F-absorber in the following sense: $A^* \cup H^*$ has an F-decomposition whenever H^* is a sparse F-divisible graph on V(G) which is edge-disjoint from A^* . Let G' be the subgraph of G remaining after removing the edges of A^* . Since A^* is sparse, $\delta(G') \geq (\delta_F^{\eta} + \varepsilon/2)n$. By the definition of δ_F^{η} , G' has an η -approximate F-decomposition \mathcal{F} . Let $H^* := G' - \bigcup \mathcal{F}$ be the leftover. Note that H^* is also F-divisible. Since $A^* \cup H^*$ has an F-decomposition, so does G.

Unfortunately, this naïve approach fails for the following reason: we have no control on the leftover H^* . More precisely, the natural way to obtain A^* would be to construct it as the edge-disjoint union of graphs A such that each such A has an F-decomposition and, for each possible leftover graph H^* , there is a distinct A so that $A \cup H^*$ has an F-decomposition. However, even if $H^* = C_6$, the number of possibilities for H^* is at least $\binom{n}{6}$. So we have no hope of finding all the required graphs A in G (and thus to construct A^*). To overcome this problem, we reduce the number of possible configurations of H^* (in turn reducing the number of graphs A required) as follows. Roughly speaking, we iteratively find approximate decompositions of the leftover so that eventually our final leftover H^* only has O(n) edges whose location is very constrained—so one can view this step as finding a 'near optimal' F-decomposition.

To illustrate this, suppose that $m \in \mathbb{N}$ is bounded and n is divisible by m. Let $\mathcal{P} := \{V_1, \ldots, V_q\}$ be a partition of V(G) into parts of size m (so q = n/m). We further suppose that H^* is a vertex-disjoint union of F-divisible graphs H_1^*, \ldots, H_q^* such that $V(H_i^*) \subseteq V_i$ for each i. Hence to construct A^* , we only need to find one A for each possible H_i^* . For a fixed i, there are at most $2^{\binom{|V_i|}{2}} = 2^{\binom{m}{2}}$ possible configurations of H_i^* . Since m is bounded, in order to construct A^* we would only need to find $q2^{\binom{m}{2}} = 2^{\binom{m}{2}}n/m$ different A.

We now describe in more detail the iterative approach which achieves the above setting. Recall that G' is the subgraph of G remaining after removing all the edges of A^* . Since A^* is sparse, G' has roughly the same properties as G. Our new objective is to find edge-disjoint copies of F covering all edges of G' that do not lie entirely within V_i for some i. Since each V_i has bounded size, these edge-disjoint copies of F will cover all but at most a linear number

of edges of G'. As indicated above, we use an iterative approach to achieve this. We proceed as follows. Let $k \in \mathbb{N}$. Let \mathcal{P}_1 be an equipartition of V(G) into k parts, and let G_1 be the k-partite subgraph of G' induced by \mathcal{P}_1 (here k is large but bounded). Suppose that we can cover the edges of G_1 by copies of F which use only a small proportion of the edges not in G_1 . Call the leftover graph H_1 . Let \mathcal{P}_2 be an equipartition of V(G) into k^2 parts obtained by dividing each $V \in \mathcal{P}_1$ into k parts. Let G_2 be the k^2 -partite subgraph of H_1 induced by \mathcal{P}_2 . Each component of G_2 will form a k-partite graph lying within some $V \in \mathcal{P}_1$. So by applying the same argument to each component of G_2 in turn and iterating $\log_k(n/m)$ times we obtain an equipartition $\mathcal{P} = \mathcal{P}_\ell$ of V(G) with |V| = m for each $V \in \mathcal{P}$ such that all edges of G' that do not lie entirely within some $V \in \mathcal{P}$ can be covered by edge-disjoint copies of F.

References

- [1] D. Bryant and N. Cavenagh, Decomposing graphs of high minimum degree into 4-cycles, J. Graph Theory, **79** (2015), 167–177.
- [2] D. Dor and M. Tarsi, Graph decomposition is NPC a complete proof of Holyer's conjecture, STOC '92 Proceedings of the twenty-fourth annual ACM symposium on Theory of computing, (1992), 252–263.
- [3] P. Dukes, Rational decomposition of dense hypergraphs and some related eigenvalue estimates, Linear Algebra Appl., **436** (2012), 3736–3746, (see arXiv:1108.1576 for an erratum).
- [4] T. Gustavsson, Decompositions of large graphs and digraphs with high minimum degree, PhD thesis, Univ. of Stockholm, 1991.
- [5] P.E. Haxell and V. Rödl, Integer and fractional packings in dense graphs, Combinatorica, 21 (2001), 13–38.
- [6] P. Keevash, The existence of designs, arXiv preprint arXiv:1401.3665.
- [7] T.P. Kirkman, On a problem in combinatorics, Cambridge Dublin Mathematical Journal, 2 (1847) 191–204.
- [8] M. Krivelevich, Triangle factors in random graphs, Combin. Probab. Comput., 6 (1997), 337–347.
- [9] D. Kühn and D. Osthus, Hamilton decompositions of regular expanders: a proof of Kelly's conjecture for large tournaments, Adv. Math., 237 (2013), 62–146.

- [10] C.St.J.A. Nash-Williams, An unsolved problem concerning decomposition of graphs into triangles, Combinatorial Theory and its Applications III, North Holland (1970), 1179–183.
- [11] V. Rödl, A. Ruciński, and E. Szemerédi, A Dirac-type theorem for 3-uniform hypergraphs, Combin. Probab. Comput., 15 (2006), 229–251.
- [12] R.M. Wilson, Decompositions of complete graphs into subgraphs isomorphic to a given graph, Proceedings of the Fifth British Combinatorial Conference (Univ. Aberdeen, Aberdeen (1975), 647–659.
- [13] R. Yuster, The decomposition threshold for bipartite graphs with minimum degree one, Random Structures Algorithms, 21 (2002), 121–134.
- [14] R. Yuster, Combinatorial and computational aspects of graph packing and graph decomposition, Computer Science Review, 1 (2007), 12–26.
- [15] R. Yuster, *H*-packing of k-chromatic graphs, Mosc. J. Comb. Number Theory, **2** (2012), 73–88.