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Abstract

This is a short example to show the basics of using the ENDM style macro files.
Ample examples of how files should look may be found among the published volumes
of the series at the ENDM home page (http://www.elsevier.com/locate/endm)
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1 Introduction

A graph G is perfect if every induced subgraph H of G satisfies χ(H) = ω(H),
where χ(H) is the chromatic number of H and ω(H) is the maximum clique
size in H. A hole is a chordless cycle with at least four vertices and an anti-
hole is the complement of a hole. A Berge graph is any graph that contains
no odd hole and no odd antihole of length at least 5. Berge’s famous “Strong
Perfect Graph Conjecture” [1,2,3,12] was solved by Chudnovsky, Robertson,
Seymour and Thomas [6]: Every Berge graph is perfect. Moreover, Chud-
novsky, Cornuéjols, Liu, Seymour and Vušković [5] devised a polynomial-time
algorithm that determines if a graph is Berge. It is known that one can obtain
an optimal coloring of a perfect graph in polynomial time due to the algorithm
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of Grötschel, Lovász and Schrijver [9]. This algorithm however is not purely
combinatorial and is generally considered impractical.

An even pair in a graph G is a pair {x, y} of non-adjacent vertices such
that every chordless path between them has even length (number of edges). A
graph G is even-contractile [4] if either G is a clique or there exists a sequence
G0, . . . , Gk of graphs such that G = G0, for i = 0, . . . , k − 1 the graph Gi has
an even pair {xi, yi}, Gi+1 is the graph obtained from Gi by contracting (iden-
tifying) xi and yi into one vertex, and Gk is a clique. A graph G is perfectly
contractile if every induced subgraph of G is even-contractile. This class is of
interest because many classical families of graphs are perfectly contractile and
consequently admit a “purely combinatorial” coloring algorithm; see [8].

Everett and Reed [8] proposed a conjecture aiming at a characterization of
perfectly contractile graphs. A prism is a graph that consists of two vertex-
disjoint triangles (cliques of size 3) with three vertex-disjoint paths P1, P2, P3

between them, and with no other edge than those in the two triangles and in
the three paths. The length of a path is its number of edges. Note that if
two of the paths P1, P2, P3 have lengths of different parities, then their union
induces an odd hole. So in a Berge graph, the three paths of a prism have
the same parity. A prism is even (resp. odd) if these three paths all have even
lengths (resp. all have odd lengths).

Conjecture 1.1 ([8]) A graph is perfectly contractile if and only if it contains
no odd hole, no antihole of length at least 5, and no odd prism.

Conjecture 1.2 ([8]) Any graph that contains no odd hole, no antihole of
length at least 5, and no prism is perfectly contractile.

Conjecture 1.1 remains open. Let A be the class of graphs that contain no
odd hole, no antihole of length at least 5, and no prism. Conjecture 1.2 was
proved in [11], as follows.

Theorem 1.3 ([11]) There is a polynomial time algorithm which returns a
clique of size ω(G) and a coloring with ω(G) colors for every graph G in A.

A square is a hole of length four. A graph is square-free if it does not
contain a square as an induced subgraph. We will be able to prove that every
square-free Berge graph with no odd prism either is a clique or has an even
pair, as suggested in Conjecture 1.1. Unfortunately, contracting an even pair
may result in the presence of a square in the contracted graph, so the result
does not yield a proof of Conjecture 1.1 for square-free graphs. Nevertheless,
using the presence of even pairs, we can prove the following theorem.



Theorem 1.4 There exists a combinatorial and polynomial time algorithm
which, given any square-free Berge graph G with no odd prism, returns an
ω(G) coloring of G and a clique of size ω(G).

Since Theorem 1.3 settles the case of graphs that have no prism, we may
assume from now on that we are dealing with a square-free Berge graph G
that contains no odd prism and contains an even prism.

2 Hyperprisms

Given a set T ⊂ V (G), we say that a vertex of V (G) \ T is complete to T if
it is adjacent to all vertices of T . Given two sets S, T ⊂ V (G), S is complete
to T if every vertex of S is complete to T .

As in [6], a hyperprism is a 9-tuple (A1, C1, B1, A2, C2, B2, A3, C3, B3) of
non-empty and pairwise disjoint subsets of V (G) with the following properties:

• For distinct i, j ∈ {1, 2, 3}, Ai is complete to Aj, and Bi is complete to Bj,
and there are no other edges between Ai ∪ Ci ∪ Bi and Aj ∪ Cj ∪ Bj.

• For each i ∈ {1, 2, 3}, every vertex of Ai ∪ Ci ∪ Bi belongs to a chordless
path between Ai and Bi with interior in Ci.

For each i ∈ {1, 2, 3}, a chordless path from Ai to Bi with interior in Ci is
called an i-rung. Let us write A = A1 ∪ A2 ∪ A3, B = B1 ∪ B2 ∪ B3 and
C = C1 ∪ C2 ∪ C3. Let Si = Ai ∪ Bi ∪ Ci for i ∈ {1, 2, 3}. The triple
(Ai, Ci, Bi) is called a strip of the hyperprism. We call (A,C,B) the profile
of the hyperprism. Given two hyperprisms η and η′ with profiles (A,C,B)
and (A′, C ′, B′) respectively, we write η ≺ η′ if C ⊆ C ′ and either (i) A ⊆ A′

and B ⊆ B′ or (ii) A ⊆ B′ and B ⊆ A′ and one of these inclusions is strict.
Clearly, ≺ is an order relation on hyperprisms, so we can speak about maximal
hyperprisms for ≺.

Let η be a maximal hyperprism. Let H be the subgraph of G induced on
the union of the nine sets Ai, Bi, Ci, i = 1, 2, 3. If we pick any i-rung Ri for
each i ∈ {1, 2, 3}, with ends ai ∈ Ai and bi ∈ Bi, we see that R1, R2, R3 form
a prism K; any such prism is called an instance of the hyperprism. A vertex
x in V (G) \ V (K) is a major neighbor of K if x has at least two neighbors in
{a1, a2, a3} and at least two neighbors in {b1, b2, b3}. A vertex x in V (G)\V (H)
is a major neighbor of H if x is a major neighbor of an instance of η. Let M
be the set of all major neighbors of H.

Lemma 2.1 The following properties hold:
• M is a clique.



• For each i ∈ {1, 2, 3}, M ∪ Ai ∪ Bi is a cutset that separates Ci from
Si+1 ∪ Si+2.
• Two of A1, A2, A3 and two of B1, B2, B3 are cliques.
• M is complete to at least two of A1, A2, A3 and at least two of B1, B2, B3.
• There is an integer j ∈ {1, 2, 3} such that Aj and Bj are cliques and M is
complete to Aj ∪ Bj.

2.1 Selecting a strip

Let us say that a strip (Ai, Ci, Bi) of the hyperprism is good if both Ai and Bi

are cliques and M is complete to Ai∪Bi. Lemma 2.1 says that every maximal
hyperprism in G has a good strip. We may assume that (A1, C1, B1) is a good
strip of η. Moreover, we choose η such that S1 has the smallest size over all
good strips of maximal hyperprisms.

Let R′ and R′′ be two 1-rungs of η, where R′ has ends u′, w, and R′′ has
ends u′′, w, and u′ �= u′′ (so w is in one of the two sets A1, B1 and u′, u′′ are
in the other set). We say that R′ and R′′ converge if u′ has no neighbor in
R′′ \ u′′ and u′′ has no neighbor in R′ \ u′.

Lemma 2.2 There do not exist two 1-rungs that converge.

Proof. In the opposite case, we are able to construct a maximal hyperprism
η′ that has a smaller good strip than η, a contradiction to the choice of η. �

2.2 Finding an even pair

Consider any b ∈ B1. For any two a, a′ ∈ A1, write a <b a′ whenever there
exists an odd chordless path R from a to b such that a′ is the neighbor of a
on R. For each a ∈ A1 define similarly a relation <a on B1.

Lemma 2.3 For each b ∈ B1, <b is an order relation.

Proof. In the opposite case, we are able to find two 1-rungs that converge. �

Using Lemma 2.3 and its analogue for every vertex in A1 ∪ B1, we can
establish the following.

Lemma 2.4 There exists an even pair {a, b} of G with a ∈ A1 and b ∈ B1.

Let A1 = {a1, . . . , ak} and B1 = {b1, . . . , b�}, and assume that k ≤ �.
By Lemma 2.4, we may assume that {a1, b1} is an even pair of G; and
similarly, for i = 2, . . . , k, we may assume that {ai, bi} is an even pair of
G \ {a1, b1, . . . , ai−1, bi−1}.



2.3 Decomposing the graph

By Lemma 2.1, V (G) \ (M ∪A1 ∪B1) can be partitioned into two subsets X
and Y , with C1 ⊆ X and C2 ⊂ Y , such that there is no edge between X and
Y . Let GX = G\Y and GY = G\X. Thus we consider that G is decomposed
into GX and GY . Since GX and GY are proper induced sugraphs of G, we
may assume by induction that we have a clique QX of GX of size ω(GX) and
a coloring cX of GX with ω(GX) colors, and the same for GY .

Lemma 2.5 There exists a coloring c′X of GX with ω(GX) colors such that
c′X(ai) = c′X(bi) for all i = 1, . . . , k, and such a coloring can be obtained from
cX in polynomial time.

Proof. Suppose that cX itself does not have the desired property, and let h
be the smallest integer such that cX(ah) �= cX(bh). In case h > 1, we may
assume, up to relabeling, that cX(ai) = i = cX(bi) for all i = 1, . . . , h − 1.
Let cX(ah) = i and cX(bh) = j, with i �= j. Let W be the bipartite subgraph
of G induced by the vertices of color i and j. We swap colors i and j in
the component of W that contains ah. This component does not contain bh,
for otherwise it contains a chordless odd path between ah and bh, and this
path is in G \ {a1, b1, . . . , ah−1, bh−1} since it contains no vertex of color less
than i and j; but this contradicts the fact that {ah, bh} is an even pair of
G \ {a1, b1, . . . , ah−1, bh−1}. So, after the swap, ah and bh have the same color.
Thus we obtain a coloring of GX with ω(GX) colors where the value of h
has increased. Repeating this procedure at most k times leads to the desired
coloring. �

Applying Lemma 2.5 to both GX and GY , we obtain colorings cX and cY
of GX and GY respectively such that, up to relabeling, cX(ai) = cX(bi) =
cY (ai) = cY (bi) for each i = 1, . . . , k. By Lemma 2.1, M ∪ (B \ {b1, . . . , bk}) is
a clique and all its vertices are adjacent to bi for each i = 1, . . . , k. So we may
assume that every vertex z in M ∪ (B \ {b1, . . . , bk}) satisfies cX(z) = cY (z).
Thus the two colorings cX and cY coincide on the cutsetM∪A1∪B1 and so they
can be merged into a coloring of G. This coloring uses max{ω(GX), ω(GY )}
colors, and one of QX and QY is a clique of that size. So the coloring and the
larger of these two cliques are both optimal.

3 The algorithm

We can now describe our algorithm. Let G be the class of square-free Berge
graphs with no odd prism.



Input: A graph G on n vertices.
Output: Either a coloring ofG and a clique of the same size, or the negative
answer “G is not in G”.
Step 1. Test whether G is square-free, and test whether G is Berge with
the algorithm from [5]. If any of these tests fails, return the answer “G is not
in G” and stop. Now test whether G contains a prism as explained in [10].
If this algorithm produces an odd prism, then return the negative answer
and stop; if it shows that G contains no prism, then color G applying the
algorithm from [11].
Step 2. Now suppose that Step 1 has produced an even prism. Grow a
maximal hyperprism η, and find a good strip S1 of η.
Apply Lemma 2.3 to each vertex x ∈ A1 ∪ B1. Its proof either establishes
that <x is an order relation or finds 1-rungs that converge; in the latter
case, the proof of Lemma 2.2 produces a new maximal hyperprism η′ with
a smaller good strip; then restart from η′.
When <x is an order relation for all x ∈ A1 ∪ B1, Lemma 2.4 shows how
to find even pairs. The graph G is decomposed into graphs GX and GY ,
and an optimal coloring and a maximal clique for G can be obtained as
explained above.

3.1 Complexity analysis

We can test whether a graph G is Berge in time O(n9) with the algorithm
from [5]. We can test whether G is square-free in time O(n4), and whether
a Berge graph G contains a prism in time O(n5) as explained in [10]. Now
assume that the algorithm produces an even prism. It is easy to to see that
all the procedures in Step 2 of the algorithm (growing a maximal hyperprism,
determining the orderings) can be performed in time at most O(n3). We
complete our analysis with two remarks.
(a) When we restart from a new hyperprism, the size of the good strip is
strictly smaller; so this restarting step occurs at most O(n) times.
(b) When G is decomposed into graphs GX and GY , the algorithm is called
recursively on them. This corresponds to a decomposition tree T for G: every
non-leaf node of T is an induced subgraph G′ of G and has two children which
are induced subgraphs of G′; and every leaf of T is a graph that contains no
prism. Let us show that this tree has polynomial size. When G is decomposed
into graphs GX and GY as above, because of a certain cutset that arises from
a hyperprism η, we mark the corresponding node of the tree with a pair of
vertices {c1, c2} where c1 ∈ C1 and c2 ∈ C2 are chosen arbitrarily. We mark



every subsequent decomposition node similarly. We can show the following.

Lemma 3.1 Every pair of vertices of G is used to mark at most one node of
the decomposition tree.

By Lemma 3.1 the total number of nodes in T is O(n2). The leaves of
the decomposition tree T are Berge graphs with no antihole (since they are
square-free) and no prism, so they can be colored in time O(n6) as explained
in [11]. At each node G′ of T different from the root G, we know that G′ is an
induced subgraph of G, so it is a square-free Berge graph; hence we must only
test whether G′ contains a prism, which is done in time O(n5) as explained
in [10]. So the total complexity of the algorithm is O(n9 + n2 × n5 + n2 × n6)
= O(n9).
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