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Abstract

Given a random 3-uniform hypergraph H = H(n, p) on n vertices where each triple
independently appears with probability p, consider the following graph process. We
start with the star G0 on the same vertex set, containing all the edges incident to
some vertex v0, and repeatedly add an edge xy if there is a vertex z such that xz

and yz are already in the graph and xyz ∈ H. We say that the process propagates
if all the edges are added to the graph eventually. In this paper we prove that the
threshold probability for propagation is p = 1

2
√
n
. We also show that p = 1

2
√
n
is an
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upper bound for the threshold probability that a random 2-dimensional simplicial
complex is simply-connected.

Keywords: triadic process, random simplicial complexes, differential equation
method

1 Introduction

The principle of triadic closure is an important concept in social network
theory (see e.g. [5]). Roughly speaking, it says that when new friendships
are formed in a social network, it is more likely to occur between two peo-
ple sharing a common friend, thus “closing” a triangle, than elsewhere. We
will consider a simplistic model of the evolution of a social network, where
friendships can only be formed through a common friend, and triadic closure
eventually occurs at any triangle with probability p, independently of other
triangles. We refer to this process as the triadic process.

Formally, let H = H(n, p) be a random 3-uniform hypergraph on [n] where
each triple independently appears with probability p. The triadic process is
the following graph process. We start with the star G0 on the same vertex set
[n], containing all the edges incident to some vertex v0, and repeatedly add
any edge xy if there is a vertex z such that xz and yz are already in the graph
and xyz ∈ H . We say that the process propagates if all the edges are added
to the graph eventually. It is easy to see that this event does not depend on
the order the edges are added in. In this paper we prove that the threshold
probability for propagation is 1

2
√
n
.

Theorem 1.1 Suppose p = c√
n
, for some constant c > 0. Then,

(i) If c > 1
2
, then the triadic process propagates whp.

(ii) If c < 1
2
, then the triadic process stops at O(n

√
n) edges whp.

As usual, we say that some property holds with high probability or whp if
it holds with probability tending to 1 as n tends to infinity.

Randomized graph processes have been intensively studied in the past
decades. One notable example is the triangle-free process, originally motivated
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by the study of the Ramsey number R(3, n) (see e.g. [6]). In this process the
edges are added one by one at random as long as they do not create a triangle
in the graph. The triadic process is a slight variant of this, with a very similar
nature. Indeed, our analysis makes good use of the tools developed by Bohman
[2] when he applied the differential equation method to track the triangle-free
process. Several other related processes were also analyzed using differential
equations, e.g. [3]. For more information about this method we refer the
interested reader to the excellent survey of Wormald [8].

Coja-Oghlan, Onsjö and Watanabe [4] investigated a similar kind of closure
while analyzing connectivity properties of random hypergraphs. They say that
a 3-hypergraph is propagation connected if its vertices can be ordered in some
way v1, . . . , vn so that each vi (i ≥ 3) forms a hyperedge with two preceding
vertices. They obtain the threshold probability for the propagation connec-
tivity of H(n, p) up to a small multiplicative constant. Using this directed
notion of connectivity, our problem asks when the random 3-hypergraph on
the line graph of Kn is propagation connected from the star.

Our main motivation for considering the triadic process comes from the
theory of random 2-dimensional simplicial complexes. A simplicial 2-complex
on the vertex set V is a set family Y ⊆

(

V
≤3

)

closed under taking subsets. The
dimension of a simplex σ ∈ Y is defined to be |σ| − 1. We use the terms
vertices, edges and faces for 0, 1 and 2-dimensional simplices, respectively.
The 1-skeleton of a 2-complex is the subcomplex containing its vertices and
edges.

The Linial–Meshulam model of random simplicial complexes, introduced
in [7], is a generalization of the Erdős–Rényi random graph model and has
been studied extensively in recent years. The random 2-complex Y2(n, p) is
defined to have the complete 1-skeleton, i.e. all vertices and edges, and each of
the faces independently with probability p. The study of random complexes
involves both topological invariants and combinatorial properties, including
homology groups, homotopy groups, collapsibility, embeddability and spectral
properties.

Babson, Hoffman and Kahle [1] considered π1(Y2(n, p)), the fundamental
group of the random 2-complex, and showed that if p < n−α for some arbitrary
α > 1/2 then this group is nontrivial whp. On the other hand, they proved
that π1(Y2(n, p)) is trivial for p >

√

4 logn/n, which means that the threshold
probability for being simply connected should be close to n−1/2. As a corollary
of the first part of Theorem 1.1, we improve the upper bound on the threshold
probability by a

√
log n factor.



Corollary 1.2 Let p = c√
n
for some constant c > 1

2
. Then Y2(n, p) is simply

connected whp.

Proof. Theorem 1.1 shows that if H is the hypergraph corresponding to the
2-dimensional faces of Y2(n, p) then the triadic process propagates. Take the
subcomplex C of Y2(n, p) containing the triangles used by the process to extend
the edge set of the graph. This complex is collapsible to the star, so it has
trivial fundamental group. Hence π1(Y2(n, p)) is also trivial. ✷

1.1 Proof outline

Instead of exposing all the triples at once, we will be sampling them on the
fly, trying to extend the edge set of the graph. At any point in the process, we
say that a vertex triple {u, v, w} is open if it spans exactly two edges but has
not yet been sampled. We will also use the notation uvw for an open triple
with edges uv and vw. By an open triple at u, we mean a triple uvw, i.e. one
that has its missing edge adjacent to the vertex u.

Both the proofs of the upper bound and the lower bound consist of two
phases. In the first phase we make one step at a time: we choose an open triple
uniformly at random and expose it. With probability p the triple is selected,
hence we can close it by adding the missing edge to the graph. The second
phase proceeds in rounds: we simultaneously expose all the open triples and
extend the edge set according to the outcome.

The essence of the proof is to track the behavior of certain variables
throughout the process. As it turns out, this is not a very hard task to
do in the second phase, using standard measure concentration inequalities.
However, during the initial phase of the process, the codegrees (one of the
variables we track) are not concentrated, which forces us to do a more careful
analysis of the beginning of the process. For this we will use the differential
equation method.

2 The differential equation method

The general idea of the differential equation method is the following. In or-
der to say something about a discrete random process, we intend to track
certain variables. We do so by translating recurrence relations (or difference
equations) defining the one-step change in our variables into their continuous
analogs, differential equations. Then we show that the variables follow the
trajectories of the solutions of these differential equations. We analyze the
process using some ideas from [2].



For simplicity, let us denote the graph we obtain after i samples by Gi.
We consider the following random variables: Dv(i) is the degree of the vertex
v in Gi. Fv(i) is the number of open triples at v, so it is the number of ways
for v to gain a new incident edge in Gi+1. Xu,v(i) is the codegree of u and v,
i.e. the number of common neighbors of u and v in Gi.

To provide some insight, we first heuristically describe the process. Let
us assume for now that the Dv(i) are concentrated around some value D(i),
and similarly the Fv(i) are approximately equal to some value F (i). (For
convenience, we drop the center of the star from consideration.)

In step i+ 1 we sample an open triple uniformly at random, which corre-
sponds to choosing a single such triple independently with probability 2∑

v
Fv(i)

≈
2

nF (i)
because

∑

v Fv(i) counts each open triple twice. As the number of open

triples at a vertex v is about F (i), the change in the degree of v we expect to
see is

D(i+ 1)−D(i) ≈ 2p

n
.

We gain open triples at v either if we successfully sample one of them
(adding the edge vw), in which case new open triples are formed with the
neighbors of w, or if we successfully sample a triple at some neighbor of v.
On the other hand, we lose the sampled triple regardless of the outcome.
Assuming all the codegrees are negligible compared to D(i), this gives us

F (i+ 1)− F (i) ≈ 2

n
(2pD(i)− 1).

To smooth out this discrete process, we introduce a continuous variable t
and say that step i corresponds to time t = i

n2 . Let us also rescale D and
F by considering the smooth functions d and f , where we want d(t) to be
approximately D(i)/

√
n and f(t) to be approximately F (i)/n. Then an easy

calculation shows that d′(t) ≈ 2c and f ′(t) ≈ 4cd(t)− 2.

So far we assumed that the codegrees are negligible compared to the
degrees, but since they are not concentrated, proving this still needs some
thought. To this end, we introduce two more random variables. Yu,v(i) de-
notes the number of open 3-walks uww′v from u to v, i.e. 3-walks where we
require that uww′ be open (but allowing w = v), and Zu,v(i) is the number of
open 4-walks uww′w′′v (again, allowing vertex repetitions), where both uww′

and w′w′′v are open. Note that Yu,v is not symmetric in u and v.

The point is that Yu,v and Zu,v are concentrated, and their one-step behav-
ior can be described with fairly simple formulas. Indeed, analogously assuming



concentration around Y (i), and Z(i), and defining the rescaled functions y and
z such that y(t) is close to Y (i)/

√
n, and z(t) is close to Z(i)/n, we obtain

y′(t) ≈ 2
f(t)

(

(2cd(t)− 1)y(t) + cz(t)
)

and z′(t) ≈ 4
f(t)

(

2cy(t)f(t)− z(t)
)

.

This illustrates why it is plausible to believe that the variables follow the
tracks of the functions defined by the differential equations above. For the
star D(0) = 1, F (0) = n − 2, Y (0) = 0 and Z(0) = n − 3, giving the initial
conditions d(0) = 0, f(0) = 1, y(0) = 0 and z(0) = 1. The corresponding
solution of our system of differential equations is

d(t) = 2ct f(t) = 1− 2t+ 4c2t2

y(t) = d(t)f(t) z(t) = f 2(t).

Next, we need to prove that our variables follow the prescribed trajectories
up to some time T . Note that if c ≤ 1/2 then f vanishes at T0 =

1−
√
1−4c2

4c2
, so

we expect the process to die around time T0. In this case we choose T to be
slightly less than T0, when c > 1/2 we choose T =

√
log n.

The allowed deviation of each variable will be defined by one of the error
functions

g1(t) = eKtn−1/6 and g2(t) = (1 + d(t))eKtn−1/6,

where K is some large constant depending on c.

Theorem 2.1 Let T ≤
√
logn and K are defined as above. Then the follow-

ing bounds hold with high probability for all vertices u and v and for every

i = 1, . . . , T · n2.

Dv(i) ∈
(

d(t)± g1(t)
)√

n Yu,v(i) ∈
(

y(t)± g2(t)
)√

n

Fv(i) ∈
(

f(t)± g1(t)
)

n Zu,v(i) ∈
(

z(t)± g2(t)
)

n

Xu,v(i) ≤ 50 logn.

Proof sketch. We aim to show the concentration of each variable in each
step separately. So let R represent any of the above variables, then to show
R(j) is in the prescribed interval, we condition on the event that concentration
holds for every variable in all steps i = 0, . . . , j − 1.

Writing R(j) = R(0) +
∑j−1

i=0

(

R(i+ 1)− R(i)
)

, we can use the difference
equations described above to each term in the sum. This means that R(j) is
the sum of random variables restricted to intervals, allowing us to use some
martingale concentration inequalities to bound the error probability. ✷



3 Lower bound

To show that the process does not propagate when c < 1/2, we run the first
phase up to time very close to T0 (recall that T0 is the first vanishing point
of f). At this point all the degrees are less than

√
n. Now we start exposing

open triples in rounds. Using an inductive argument, we can prove that all
the degrees stay below

√
n for at least Ω(log n) rounds. Meanwhile, a parallel

argument shows that as long as the degrees are bounded by
√
n, the expected

total number of open triples drops exponentially in the rounds. Hence after
O(logn) rounds we expect to see o(1) open triples, meaning (by Markov’s
inequality) that the process dies whp while the degrees are still less than

√
n.

4 Upper bound

To show that the process propagates whp when c > 1/2, we run the first phase
until time T =

√
log n and sample triples in rounds afterwards. Our plan is to

give a sequence of lower bounds on the codegrees that increases exponentially
in the number of rounds passed. At the end of the first phase we have no
lower bound on X, but the fact that any open 4-walk contributes one with
probability p2 allows us to give a Ω(log2 n) lower bound already after the first
round.

Note also that the vast majority of these codegrees are new, i.e. they
correspond to open triples. Each such triple creates an edges with probability
p, so we expect to see Ω(

√
n log2 n) new edges at each vertex, and consequently

an increase of Ω(log4 n) in all the codegrees.

This interaction between the degrees and codegrees, together with some
Chernoff-type concentration arguments allow us to prove that after i rounds
all the codegrees are bounded from below by (ε logn)2

i

for some small ε (as
long as this value is below n, of course). Hence we reach the complete graph
in O(log log n) rounds, in other words the process propagates.
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[6] Erdős, P., S. Suen and P. Winkler, On the size of a random maximal graph,
Random Structures & Algorithms 6 (1995), 309–318.

[7] Linial, N. and R. Meshulam, Homological connectivity of random 2-dimensional

complexes, Combinatorica 26 (2006), 475–487.

[8] Wormald, N., The differential equation method for random graph processes and

greedy algorithms, “Lectures on Approximation and Randomized Algorithms”,
PWN, Warsaw, 1999, 73–155.


	Introduction
	Proof outline

	The differential equation method
	Lower bound
	Upper bound
	References

