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Abstract

A graph G is said to be H(n,Δ)-universal if it contains every graph on n ver-
tices with maximum degree at most Δ. It is known that for any ε > 0 and any
natural number Δ there exists c > 0 such that the random graph G(n, p) is asymp-
totically almost surely H((1 − ε)n,Δ)-universal for p ≥ c(log n/n)1/Δ. Bypassing
this natural boundary, we show that for Δ ≥ 3 the same conclusion holds when

p = ω
(
n−

1
Δ−1 log5 n

)
.

Keywords: Random graphs, Universality, Bounded-degree graphs

1 Research supported by a Royal Society University Research Fellowship.
2 Email: david.conlon@maths.ox.ac.uk
3 Email: asaf.ferber@yale.edu
4 Email: rnenadov@inf.ethz.ch
5 Email: nskoric@inf.ethz.ch

Available online at www.sciencedirect.com

www.elsevier.com/locate/endm

http://www.elsevier.com/locate/endm
http://www.sciencedirect.com


1 Introduction

Given a family of graphs H, a graph G is said to be H-universal if it contains
every member of H as a subgraph (not necessarily induced). Universal graphs
have been studied quite extensively, particularly with respect to families of
forests, planar graphs and graphs of bounded degree (see, for example, [4, 5,
7–12, 14] and their references). In particular, it is of interest to find sparse
universal graphs.

LetH(n,Δ) be the family of all graphs on n vertices with maximum degree
at most Δ. Building on earlier work with several authors [2, 5, 6], Alon and
Capalbo [3,4] showed that there are graphs with at most cΔn

2−2/Δ edges which
are H(n,Δ)-universal. A simple counting argument shows that this result is
best possible.

The construction of Alon and Capalbo is explicit. An earlier approach
had been to study whether random graphs could be H(n,Δ)-universal. The
binomial random graph G(n, p) is the graph formed by choosing every edge of
a graph on n vertices independently with probability p. We say that G(n, p)
satisfies a property P asymptotically almost surely (a.a.s.) if Pr(G(n, p) ∈ P)
tends to 1 as n tends to infinity. The first result on universality in random
graphs was proved by Alon, Capalbo, Kohayakawa, Rödl, Ruciński and Sze-
merédi [5], who showed that for any ε > 0 there exists a constant c > 0
such that the random graph G(n, p) is a.a.s. H((1 − ε)n,Δ)-universal for
p ≥ c(log n/n)1/Δ.

Here we make some initial progress on improving the theorem of Alon et.
al [5] on almost-spanning universality in random graphs.

Theorem 1.1 For any constant ε > 0 and integer Δ ≥ 3, the random graph
G(n, p) is a.a.s. universal for the family H((1 − ε)n,Δ), provided that p =

ω
(
n−

1
Δ−1 log5 n

)
.

This result bypasses a natural barrier, since (log n/n)1/Δ is roughly the
lowest probability at which we can expect that every collection of Δ vertices
will have many neighbors in common, a condition which is extremely useful if
one wishes to embed graphs of maximum degree Δ. On the other hand, the
lowest probability at which one might hope that the random graph G(n, p)
is a.a.s. H((1− ε)n,Δ)-universal is n−2/(Δ+1). Indeed, below this probability,
G(n, p) will typically not contain (1 − ε) n

Δ+1
vertex-disjoint copies of KΔ+1

(see, for example, [13]). Thus, for Δ = 3 our result is optimal up to the
logarithmic factor, while for Δ ≥ 4 the gap remains.

In proving Theorem 1.1, we will make use of a recent result of Ferber,



Nenadov and Peter [12] which improves the bounds in [11] for families H′ ⊆
H(n,Δ) of graphs which have no “dense” subgraphs, i.e. no subgraphs of
density Δ/2. When embedding a graph H ∈ H((1 − ε)n,Δ), we will first
find a subgraph H ′ ∈ H′ by removing all small components and certain short
cycles in H. We then use the main result of [12] to embed H ′, after which we
replace the short cycles and small components to find an embedding of H.

1.1 Notation

For a graph G = (V,E), we denote by v(G) and e(G) the size of the vertex

and edge sets, respectively. For a vertex v ∈ V , we write Γ
(i)
G (v) := {w ∈

V : dist(v, w) = i} for the set of vertices at distance exactly i from v. For

simplicity, we let Γ
(0)
G (v) := {v} and ΓG(v) := Γ

(1)
G (v). Furthermore, for a set

S ⊆ V , we define Γ
(i)
G (S) := {w ∈ V : minv∈S dist(v, w) = i}. Similarly, we

let B
(i)
G (v) :=

⋃i
j=0 Γ

(j)
G (v) be the ball of radius i around v in G, i.e., the set of

all vertices at distance at most i from v. For an integer k and a set of vertices
S ⊆ V , we say that S is k-independent if B

(k)
G (v) ∩ (S \ {v}) = ∅, i.e., every

two vertices in S are at distance at least k+1. If there is no risk of ambiguity,
we omit G from the subscript.

2 Tools and preliminaries

In this section, we present some tools to be used in the proof of our main
result.

2.1 Universality for some special classes of graphs

In the following definition, we introduce a family of graphs that admit a “nice
partition”.

Definition 2.1 Let n, d and t be positive integers and let ε be a positive
number. The family of graphs F(n, t, ε, d) consists of all graphs H on n
vertices for which there exists a partition W0, . . . ,Wt of V (H) such that

(i) |Wt| = �εn�,
(ii) W0 = Γ(Wt),

(iii) Wt is 3-independent,

(iv) Wi is 2-independent for every 1 ≤ i ≤ t− 1, and

(v) for every 1 ≤ i ≤ t and for every w ∈ Wi, w has at most d neighbors in
W0 ∪ . . . ∪Wi−1.



The following result, due to Ferber, Nenadov and Peter [12], shows that
for an appropriate p a typical G ∼ G(n, p) is F(n, t, ε, d)-universal.
Theorem 2.2 (Theorem 4.1 in [12]) Let n and t be positive integers, let
d = d(n) ≥ 2 be an integer and let ε < 1/(2d). Then the random graph G(n, p)
is a.a.s. F(n, t, ε, d)-universal, provided that p = ω

(
ε−1tn−1/d log2 n

)
.

The following lemma will allow us to ignore small connected components
in the proof of Theorem 1.1.

Lemma 2.3 Let ε > 0 be a constant and Δ ≥ 3 and k integers. Then, for
p = ω(n−2/(Δ+1)), G ∼ G(n, p) a.a.s. has the following property: for every
V ′ ⊆ V (G) of order |V ′| ≥ εn, G[V ′] contains all connected graphs H ∈
H(logk n,Δ).

2.2 Systems of disjoint representatives in hypergraphs

The following lemma will allow us to remove and replace a set of short cycles
in the proof of Theorem 1.1 (see Phase II in the proof of Theorem 1.1). We
make no effort to optimize the logarithmic factor in the bound on the edge
probability p.

Lemma 2.4 Let ε > 0 be a constant, Δ ≥ 3, 3 ≤ g ≤ 2 log n and t ≤
εn/8 log3 n be integers and let D ⊆ [n] be a subset of order |D| = εn/ log n.
Then G ∼ G(n, p) satisfies the following with probability at least 1 − o(1/n),

provided that p� (
log7 n/n

)1/(Δ−1)
: for any family of subsets {Wi,j}(i,j)∈[t]×[g],

where

(i) Wi,j ⊆ V (G) \D and |Wi,j| = Δ− 2 for all (i, j) ∈ [t]× [g], and

(ii) Wi,j ∩Wi′,j′ = ∅ for all i 
= i′,

there exists a family of cycles {Ci = (ci1 , . . . , cig)}i∈[t], each of length g, such
that

(i) V (Ci) ⊆ G[D] and V (Ci) ∩ V (Ci′) = ∅, for all i 
= i′, and

(ii) Wi,j ⊆ ΓG(cij) for all (i, j) ∈ [t]× [g].

Lemma 2.4 follows from the generalization of Hall’s matching criterion due
to Aharoni and Haxell [1].

Theorem 2.5 (Corollary 1.2, [1]) Let g be a positive integer and H =
{H1, . . . , Ht} a family of g-uniform hypergraphs on the same vertex set. If,
for every I ⊆ [t], the hypergraph

⋃
i∈I Hi contains a matching of size greater



than g(|I| − 1), then there exists a function f : [t] → ⋃t
i=1E(Hi) such that

f(i) ∈ E(Hi) and f(i) ∩ f(j) = ∅ for i 
= j.

3 Proof of Theorem 1.1

Our proof strategy goes as follows. Given a graph H ∈ H((1 − ε)n,Δ), we
first remove small connected components from H, writing H1 for the resulting
graph. Working in H1, we then remove some carefully chosen induced cycles
of length at most 2 log n in such a way that the resulting graph H2 belongs to
the family of graphs F((1− ε′)n,Θ(log3 n), ε′′,Δ− 1), for some parameters ε′

and ε′′ tending to zero with ε. Now, using Theorem 2.2, we find an embedding
of H2. Then, using Lemma 2.4, we replace the removed cycles. Finally, using
Lemma 2.3, we complete the embedding of H by embedding small components
one by one. We will now give a formal description of this procedure.

Preparing the graph G. Fix some ε > 0 and integer Δ ≥ 3. Let
R,D3, . . . , D2 logn ⊆ [n] be arbitrarily chosen disjoint subsets of {1, . . . , n}
such that |R| = (1− ε/2)n and |Di| = εn/4 log n for each i ∈ {3, . . . , 2 log n}.
Let G be a graph with the following properties:

(i) the induced subgraph G[R] is F((1 − ε/2)n, (Δ2 + 1)q + 1, ε′,Δ − 1)-
universal, where q = 65ε−1 log3 n and ε′ = min{1/2Δ, ε/(2− ε)},

(ii) for every subset V ′ ⊆ V (G) of order |V ′| ≥ εn, the induced subgraph
G[V ′] contains every connected graph from the family H(log4 n,Δ), and

(iii) G satisfies the property given by Lemma 2.4 for every g ∈ {3, . . . , 2 log n},
t ≤ εn/(32 log3 n) and D = Dg.

Observe that by Theorem 2.2 and Lemmas 2.3 and 2.4, the random graph G ∼
G(n, p) satisfies properties (i)-(iii) asymptotically almost surely, provided that
p = ω

(
n−1/(Δ−1) log5 n

)
. We remark that the bound on p here is determined

by Theorem 2.2.

Preparing the graph H. Let H ∈ H((1 − ε)n,Δ) and let H1 ⊆ H be the
subgraph which consists of all connected components of H with at least log4 n
vertices. Moreover, let I ⊆ V (H1) be a maximal (64ε−1 log3 n)-independent
set in H1. It is not difficult to see that |I| ≤ εn

32 log3 n
. The following observation

plays a crucial role in our argument.

Claim 3.1 For every vertex v ∈ I at least one of the following properties
hold:

(a) B
(logn)
H1

(v) contains a vertex w with degH1
(w) ≤ Δ− 1, or



(b) H1[B
(logn)
H1

(v)] contains a cycle of length at most 2 log n.

Proof. Let us assume the opposite, i.e., for every vertex w ∈ B
(logn)
H1

(v) we

have degH1
(w) = Δ and H1[B

(logn)
H1

(v)] contains no cycle of length at most

2 log n. Then H1[B
(logn)
H1

(v)] is a tree and, since Δ ≥ 3, it contains at least∑logn
j=1 (Δ− 1)j > n vertices, which is clearly a contradiction. �

Let us write Ia for the set of all vertices in I which satisfy property (a)
of Claim 3.1 and set Ib := I \ Ia. Furthermore, for each v ∈ Ib, let Cv be a

cycle of smallest length in H1[B
(logn)
H1

(v)], let �v denote its length and fix an
arbitrary ordering (c1v, . . . , c

�v
v ) of the vertices along Cv. By minimality, Cv is

an induced cycle. Finally, let H2 := H1 \
[⋃

v∈Ib V (Cv)
]
and note that

B
(3 logn)
H1

(v) ∩ V (H2) =

{
B

(3 logn)
H1

(v), for v ∈ Ia,

B
(3 logn)
H1

(v) \ V (Cv), for v ∈ Ib.
(1)

Phase I: Embedding H2 into G[R]. We claim that there exists an em-
bedding of H2 into G[R]. Let H ′

2 be a graph on (1 − ε/2)n vertices ob-
tained from H2 by adding isolated vertices. Using property (i) of the graph
G, in order to show that there exists an embedding of H2 into G[R], it will
suffice to prove that H ′

2 ∈ F((1 − ε/2)n, (Δ2 + 1)q + 1, ε′,Δ − 1), where
q = 65ε−1 log3 n and ε′ = min{1/2Δ, ε/(2 − ε)}. We prove this by finding a
partition W0,W1, . . . ,W(Δ2+1)q+1 of V (H ′

2) with the following properties:

(i) |W(Δ2+1)q+1| = �ε′(1− ε/2)n�,
(ii) W0 = ΓH′2(W(Δ2+1)q+1),

(iii) W(Δ2+1)q+1 is 3-independent (in H ′
2),

(iv) Wi is 2-independent (in H ′
2) for every 1 ≤ i ≤ (Δ2 + 1)q, and

(v) for every 1 ≤ i ≤ (Δ2 + 1)q + 1 and for every w ∈ Wi, w has at most
Δ− 1 neighbors in W0 ∪ . . . ∪Wi−1.

First, note that H ′
2 contains at least εn/2 isolated vertices as |V (H2)| ≤

(1 − ε)n. Since ε′ ≤ ε/(2 − ε) or equivalently ε′(1 − ε/2) < ε/2, we can
set W(Δ2+1)q+1 to be a set of ε′(1 − ε/2)n isolated vertices. Then W0 = ∅
and W(Δ2+1)q+1 is trivially 3-independent. Furthermore, let Sq ⊆ V (H ′

2) \
W(Δ2+1)q+1 be the set of all remaining vertices in H ′

2 with degree at most
Δ− 1 and observe that for each v ∈ I, we have

Sq ∩ B
(3 logn)
H1

(v) 
= ∅. (2)



For v ∈ Ia, this follows from (1) and the definition of the set Ia. When v ∈ Ib,

we have from (1) and |B(3 logn)
H1

(v)| ≥ 3 log n > |V (Cv)| that B
(3 logn)
H1

(v) ∩
V (H2) 
= ∅. Thus there exists a vertex w ∈ B

(3 logn)
H1

(v) ∩ V (H2) adjacent to
some vertex in Cv, and clearly degH2

(w) ≤ Δ− 1.

Next, for each i ∈ {1, . . . , q − 1}, we define

Sq−i := Γ
(i)
H2
(Sq).

We first show that S1, . . . , Sq,W(Δ2+1)q+1 is a partition of V (H ′
2). Since dis-

jointness follows from the construction, it suffices to prove that for each
w ∈ V (H ′

2) \ W(Δ2+1)q+1 we have B
(q−1)
H2

(w) ∩ Sq 
= ∅. This can be seen as

follows. Since I is a maximal (64ε−1 log3 n)-independent set in H1, for each

vertex w ∈ V (H2) \ I we have B
(64ε−1 log3 n)
H1

(w) ∩ I 
= ∅. Otherwise, we could
extend I, contradicting its maximality. Thus, from (2) we conclude that for

each w ∈ V (H2) \ I we have B
(q−1)
H1

(w) ∩ Sq 
= ∅. Let us now consider the
shortest path in H1 from w to a vertex s ∈ Sq, and denote the vertices along
such a path as w = p0, p1, p2, . . . , pq′ = s, for some q′ ≤ q − 1. If all vertices
p1, . . . , pq′ ∈ V (H2), then clearly s ∈ Bq−1

H2
(w). Otherwise, let i′ be the small-

est index such that pi′ /∈ V (H2). But then degH2
(pi′−1) ≤ Δ− 1 and thus by

the definition pi′−1 ∈ Sq, which implies Bq−1
H2

(w) ∩ Sq 
= ∅. This shows that
S1, . . . , Sq,W(Δ2+1)q+1 is indeed a partition of V (H ′

2).

Furthermore, by construction, for each i ∈ {1, . . . , q − 1} and each vertex
v ∈ Si, v has at least one neighbor in

⋃q
j=i+1 Sj and thus at most Δ − 1

neighbors in
⋃i−1

j=0 Sj. However, the sets Si are not necessarily 2-independent
in H ′

2. This can be fixed in the following way. The square of H ′
2, denoted by

(H ′
2)

2, has maximum degree at most Δ2. Therefore, (H ′
2)

2 can be partitioned
into Δ2 + 1 sets L1, . . . , LΔ2+1 which are independent in (H ′

2)
2 and thus 2-

independent in H ′
2. Now, by setting W(i−1)(Δ2+1)+j := Si ∩ Lj for every i ∈

{1, . . . , q} and j ∈ {1, . . . ,Δ2 + 1}, we obtain a partition of V (H ′
2) satisfying

properties (i)–(v).

To conclude, we have shown thatH ′
2 ∈ F((1−ε/2)n, (Δ2+1)q+1, ε′,Δ−1).

Thus, by property (i) of the graph G, there exists an embedding f : V (H2)→
R of H2 into G[R].

Phase II: Embedding removed cycles. Consider some g ∈ {3, . . . , 2 log n}
and let Ig ⊆ Ib be the set of all vertices v ∈ Ib such that �v = g. For each
(v, j) ∈ Ig × [g], let Wv,j := f(ΓH(c

j
v) ∩ V (H2)) and observe that such family

of subsets satisfies the requirements of Lemma 2.4 with D = Dg. Therefore,
by property (iii) of the graph G, there exists a family {(cv,1, . . . , cv,g)}v∈Ig



of vertex disjoint cycles in G[Dg] such that setting f(cjv) := cv,j for every

(v, j) ∈ Ig× [g] defines an embedding of H2∪
[⋃

v∈Ig Cv

]
into G[R∪Dg]. Since

this holds for every 3 ≤ g ≤ 2 log n and the sets D3, . . . , D2 logn are disjoint,
we obtain an embedding of H1 into G.

Phase III: Embedding small components. As a last step, we have to
extend our embedding of H1 to an embedding of the whole graph H. Using
the facts that H is of order (1− ε)n and that each component of H which is
not in H1 is of order at most log4 n, we can greedily embed these components
one by one as follows. Consider one such component and let V ′ ⊆ V (G) be
the set of vertices which are not an image of some already embedded vertex
of H. Then |V ′| ≥ εn and by property (ii) of the graph G, G[V ′] contains
an embedding of the required component. Repeating the same argument for
each component which has not yet been embedded, we obtain an embedding
of the graph H.

4 Concluding remarks

The observant reader will have noticed that our argument does not apply
when Δ = 2. In this case, one cannot hope to show that universality holds all
the way down to p ≈ n−1/(Δ−1) = n−1. Even to find a collection of (1 − ε)n

3

disjoint triangles, the probability must be at least n−2/3. Since every graph
with maximum degree 2 is a disjoint union of paths and cycles, it is not too
hard to use arguments similar to those of Section 2.1 to show that for any
ε > 0 there exists a constant c > 0 such that if p ≥ cn−2/3, the random graph
G(n, p) is a.a.s. H((1− ε)n, 2)-universal.

Our proof relies heavily on the fact that the graphs we are hoping to embed
are almost spanning rather than spanning. In particular, we neither know how
to complete the removed cycles nor how to add small components back into
the graph without making heavy use of the almost spanning condition. Given
this, it seems likely that a spanning analogue of Theorem 1.1 will require new
ideas.
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