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Abstract

Let £ be a set of n lines in the plane, and let C be a convex curve in the plane, like a
circle or a parabola. The zone of C'in L, denoted Z(C, L), is defined as the set of all
faces in the arrangement A(L) that are intersected by C. Edelsbrunner et al. (1992)
showed that the complexity (total number of edges or vertices) of Z(C, £) is at most
O(na(n)), where « is the inverse Ackermann function, by translating the sequence
of edges of Z(C, L) into a sequence S that avoids the subsequence ababa. Whether
the worst-case complexity of Z(C, £) is only linear is a longstanding open problem.

In this paper we provide evidence that, if C is a circle or a parabola, then the
zone of C has at most linear complexity: We show that a certain configuration of
segments with endpoints on C' is impossible. As a consequence, the Hart—Sharir se-
quences, which are essentially the only known way to construct ababa-free sequences
of superlinear length, cannot occur in S.

Hence, if it could be shown that every family of superlinear-length, ababa-free
sequences must eventually contain all Hart—Sharir sequences, that would settle the
zone problem for a circle/parabola.
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1 Introduction

Let £ be a set of n lines in the plane. The arrangement of L, denoted A(L),
is the partition of the plane into vertices, edges, and faces induced by L. Let
C' be another object in the plane. The zone of C' in L, denoted Z(C, L), is
defined as the set of all faces in A(L) that are intersected by C'. The complexity
of Z(C, L) is defined as the total number of edges, or vertices, in it.

The celebrated zone theorem states that, if C' is another line, then Z(C, £)
has complexity O(n) (Chazelle et al. [3]; see also Edelsbrunner et al. [5],
Matousek [12]).

If C'is a convex curve, like a circle or a parabola, then Z(C, £) is known
to have complexity O(na(n)), where « is the very-slow-growing inverse Ack-
ermann function (Edelsbrunner et al. [5]; see also Bern et al. [2], Sharir and
Agarwal [21]). More specifically, the outer zone of Z(C, L) (the part that lies
outside the convex hull of C') is known to have complexity O(n), whereas the
complexity of the inner zone is only known to be O(na(n)). Whether the
complexity of the inner zone is linear as well is a longstanding open prob-
lem [2,21].

In this paper we make progress towards proving that the inner zone of a
circle, or a parabola, in an arrangement of lines has linear complexity. The
problem is more naturally formulated with a circle, but a parabola is easier
to work with. Therefore, throughout most of this paper we will take for
concreteness C' to be the parabola y = 2. In the full version of this paper we
show how to modify our argument for the case of a circle.

1.1 Davenport-Schinzel sequences and their generalizations

Let S be a finite sequence of symbols, and let s > 1 be a parameter. Then S is
called a Davenport—Schinzel sequence of order s if every two adjacent symbols
in S are distinct, and if S' does not contain any alternationa---b---a---b---
of length s+ 2 for two distinct symbols a # b. Hence, for s = 1 the “forbidden
pattern” is aba, for s = 2 it is abab, for s = 3 it is ababa, and so on.

The maximum length of a Davenport—Schinzel sequence of order s that
contains only n distinct symbols is denoted As(n). For s < 2 we have \;(n) =n
and \y(n) = 2n — 1. However, for fixed s > 3, As(n) is slightly superlinear in
n.

The case s = 3 is the one most relevant to us. Hart and Sharir [7]
constructed a family of sequences that achieve the lower bound? A3(n) >

2 See [13] on how to avoid losing a factor of 2 in the interpolation step.



na(n) —O(n); and they also proved the asymptotically matching upper bound

) < O(na(n)). Klazar [10] subsequently improved the upper bound to
A3(n) < 2na(n) + O(ny/a(n)) (recently, Pettie [18] improved the lower-order
term to O(n)). Nivasch [13] showed that A3(n) > 2na(n) —O(n) by extending
the Hart—Sharir sequences. Hence, A\3(n) = 2na(n) + O(n).

For s = 4 we have A\y(n) = ©(n - 2°™), and in general, A\;(n) = O(n -
gpoly (a(”))) for fixed s > 4, where the polynomial in the exponent is of degree
roughly s/2. See Sharir and Agarwal [21], and subsequent improvements by
Nivasch [13], and Pettie [18].

A generalized Davenport-Schinzel sequence is one where the forbidden pat-
tern is not restricted to be abab---, but it can be any fixed subsequence
u. In order for the problem to be nontrivial we must require S to be k-
sparse—meaning, every k adjacent symbols in S must be pairwise distinct—
where k = |Ju|| is the number of distinct symbols in w. For example, if we
take u = abcaccbe, then S must not contain any subsequence of the form
a---b---c---a---c---c---b---cfor [{a,b,c}| = 3, and every three adjacent
symbols in S must be pairwise distinct.

We denote by Ex(u,n) the maximum length of a k-sparse, u-avoiding se-
quence S on n distinct symbols, where k& = [Jul|. For every fixed forbidden
pattern u, Ex(u,n) is at most slightly superlinear in n: Ex(u,n) = O(n .
QPOIY(O‘(”))), where the polynomial in the exponent depends on u (Klazar [8],
Nivasch [13], Pettie [19]).

Similarly, Ex({u1,us,...,u;},n) denotes the maximum length of a se-
quence that avoids all the patterns uy, . .., u;, is k-sparse for k = min{|ju||, .. .,
|lu ||}, and contains only n distinct symbols.

Here we recall the following known facts:

o Ex({ababa, abcaccbc},n) = ©(na(n)) (Pettie [16]). Indeed, the ababa-free
sequences of Hart and Sharir [7] avoid ab cac cbe as well. ?

* Ex(abcacbe,n) = O(na(n)) (Pettie [17]). The lower bound is achieved by
a modification of the Hart—Sharir construction, which does not avoid ababa
anymore.

o It is unknown whether Ex({ababa,abcacbc},n) or Ex({ababa,ab cac cbe,
(abcacche)} n) are superlinear in n (where u® denotes the reversal of
u). We conjecture that they are both O(n).

3 Spaces are just for clarity.



1.2 Transcribing the zone into a Davenport—Schinzel sequence

Here we recall the argument of Edelsbrunner et al. [5] showing that the inner
complexity of Z(C, L) is O(na(n)).

Let £ be a set of n lines in the plane, and assume for simplicity that C' is
the parabola y = 2. Also assume general position for simplicity.

The lines £ partition the convex hull of C' into faces, only one of which is
unbounded. Let £ be the set of n segments obtained by intersecting each line
of £ with the convex hull of C.

The complexity of the unbounded face is at most n (as is the complexity of
any single face). To bound the complexity of the remaining faces, we traverse
the boundary of the inner zone by starting at the leftmost endpoint of £, and
walking around the boundary of the faces, as if the segments were walls which
we touch with the left hand at all times, until we reach the rightmost endpoint
of L. See Figure 1. We transcribe this tour into a sequence containing 3n
distinct symbols as follows:

Each segment a € L' is partitioned by the other segments into smaller
pieces. We take two directed copies of each such piece. We call each such
copy a sub-segment. One sub-segment is placed slightly above a and is di-
rected leftwards, and the other one is placed slightly below a and is directed
rightwards. Hence, our tour visits some of these sub-segments, in the direc-
tions we have given them, in a certain order.

For each segment a, the sub-segments of a that are visited, are visited
in counterclockwise order around a. We first visit some upper sub-segments
from right to left, then we visit some lower sub-segments from left to right,
and then we again visit some upper sub-segments from right to left.

Sub-segments of the first type are transcribed as a’; sub-segments of the
second type are transcribed as a, and sub-segments of the third type are
transcribed as a”. See again Figure 1. Let S’ be the sequence resulting from
the tour.

The restriction of S” to first-type symbols contains no alternation abab,
and it contains no adjacent repetitions either. Hence, it is an order-2 DS-
sequence and so it has linear length. The same is true for the restriction of S’
to third-type symbols.

Thus, the important part of the sequence S’ is its restriction to second-
type symbols. From now on we denote this subsequence S, and we call it the
lower inner-zone sequence of Z(C, L). The sequence S contains no alternation
ababa, and it contains no adjacent repetitions. Hence, S is an order-3 DS-
sequence, and hence its length is at most O(na(n)).



ab'bac'cad'dae’eaf'faa"fee"ff"e"a"dbb"dcc"d

Fig. 1. Traversing the boundary of the inner zone of the parabola.

1.3 Owur results

In this paper we offer some evidence for the following conjecture, and make
some progress towards proving it:

Conjecture 1.1 If £ is a set of n lines and C is a circle or a parabola,
then the lower inner-zone sequence S of Z(C, L) has length O(n), and hence
Z(C, L) has at most linear complezity.

Our main result is that there exists a Hart-Sharir sequence that cannot
occur as a subsequence of S.

We first present in Section 3 a certain, relatively simple configuration of
eleven segments that is impossible. It follows that the sequence S must avoid a
certain pattern u of length 33. This result, however, is useless for establishing
Conjecture 1.1, since u contains both ab cac cbe and its reversal. Therefore, by
the above-mentioned result of Pettie, the Hart—Sharir construction avoids both
u and u® (which is actually the same as u), and so Ex({ababa,u,u”},n) =
O(na(n)).

Section 3 is just a warmup for Section 4. There we construct another
impossible configuration X, this time with 173 segments. We could construct
a pattern u’ that, as a consequence, cannot occur in S, but we abstain from
doing so. Instead, we show in the full version of this paper that the Hart—
Sharir sequences eventually force the configuration X.

Finally, in Section 5 we discuss why we believe our results support Con-
jecture 1.1, and we suggest a possible line of attack. We conclude with some
open problems.



2 Preliminaries

Throughout this and the following sections C' will denote the parabola y = 2,
and £’ will denote a set of n segments with endpoints on C.

The left and right endpoints of a segment a € £’ will be denoted L, and
R,, respectively. Whenever we say that a sequence of endpoints appear in a
certain order, we mean from left to right.

Two segments a, b intersect if and only if their endpoints appear in the
order L, Ly R, Ry or Ly L, Ry R,,.

Ifay,...,a, are segments whose endpoints appear in the order L, --- L,,,
Ry, -+ R,,,, then they pairwise intersect. If the intersection points a,, Na,,—1,
..., azNasg, asNay appear in this order from left to right, then we say that the
segments intersect concavely. If the intersection points appear in the reverse
order, then we say that the segments intersect convezly.

We will specify configurations of segments by listing the order of their
endpoints, and by specifying that some subsets of segments must intersect

concavely. We will prove that some configurations are geometrically impossi-
ble.

Lemma 2.1 Leta, b, ¢, d be four points on the parabola C, having increasing
x-coordinates a, < b, < ¢, < d,. Let z = acNbd. Define the horizontal
distances p = by — Gy, ¢ = dy — Co, 7 = 25 — by, s = Cp — 2,. Then p/q = 7’/8.

Observation 2.2 Let S be the lower inner-zone sequence corresponding to
L.
(i) If S contains the subsequence abab, then segments a,b € L' cross, and
their endpoints are ordered L,, Ly, Ry, Ry from left to right.

(ii) If S contains the subsequence abcbe, then L, lies left of L.. Similarly, if
S contains cbcba, then R, lies left of R,.

(iii) If S contains axaxbxb or axaxybyb, then R, lies left of Ly.

Observation 2.3 If S contains the “N-shaped” subsequence 12---m ---
212---m, then the corresponding segments must have endpoints in the order
Ly - L, Ry -+ Ry, and must intersect concavely.



Fig. 2. An impossible configuration of segments.

3 Warmup: A simple but useless impossible configura-
tion

Theorem 3.1 Let a,b,c,d, e, 1,2,3,4,8,9 be eleven segments with endpoints
on the parabola C', in left-to-right order

LsLyLoLyLyRs Lo Ly Ry Ry Lo Ry Ly Ly Ry R. Ly Rs Ry R Ry Ry . (1)

Then, it is impossible for segments 8,1,2 to intersect concavely, segments
3,4,9 to intersect concavely, and segments a,b,c,d, e to intersect concavely,
all at the same time. See Figure 2.

Corollary 3.2 Let S be the lower inner-zone sequence of the parabola C' in
an arrangement of lines. Then S cannot contain a subsequence isomorphic to

u = 81abl2181cd12dedcbab34bc49434de49.

4 A more promising impossible configuration

We now consider endpoint sequences in which some contiguous subsequences
(blocks) that contain only left endpoints are designated as special blocks. It
will always be the case that all the special blocks in a sequence have the same
length. We denote special blocks by enclosing them in parentheses.



We define an operation on endpoint sequences called endpoint shuffling.
Let A be sequence that has k special blocks of length m, and let B be a
sequence that has ¢ special blocks of length k. Then the endpoint shuffle of
A and B, denoted Ao B, is a new sequence having k¢ special blocks of length
m+ 1, formed as follows: We make ¢ copies of A (one for each special block of
B), each one having “fresh” symbols that do not occur in B nor in any other
copy of A.

For each special block I'; = (L; ... L) in B, 1 < i </, let A; be the i-th
copy of A. We insert each L; at the end of the j-th special block of A;. Then
we insert the resulting sequence in place of I'; in B. The result of all these
replacements is the desired sequence A o B.

For example, let

A= (L,) (Ly) (L.) R, Ry R.., B = (Ly Ly L3) (L4 L5 Lg) Ry Ry R2 R5 R3 Rg.
Then,

A O B = (La Ll) (Lb Lg) (Lc Lg) Ra Rb RC (La’ L4)
(Ly L) (Lo Lg) Ry Ry Ry Ry Ry Ry Rs R Ry

Now, define the following endpoint sequences:

Fp=(Li-Lyn) Ri--Rm  m>1
Zyw=LoLy (Li---Ly) Ri- R, L.Ra

(Lmsr - Low) Rt Rom RyRe,  m>1;
V=LyLe()() L Ra() () Re By (),

where Y has five empty special blocks.
Define the endpoint sequence

X =Y o (((Z1 0 Zs) 0 Zy) 0 Zs) o Fig).

X contains 15 sets of segments of types a,b,c that come from 15 copies of
Zm; 16 sets of segments of types d, e, f that come from 16 copies of Y; and 80
“numeric” segments, which are partitioned into 16 5-tuples, according to the
16 copies of Y that contain their left endpoints. Hence, X contains a total of
173 segments.

Theorem 4.1 [t is impossible to realize X such that the segments a,b,c in
each copy of Z,, intersect concavely, the segments d,e, f in each copy of Y



intersect concavely, and the five numeric segments in each 5-tuple intersect
concavely.

5 Discussion

We believe the Hart—Sharir sequences are the only way to achieve superlinear-
length ababa-free sequences.* Specifically, we conjecture:

Conjecture 5.1 For every Hart-Sharir sequence Sy(m) we have
Ex({ababa, Si(m), (Sk(m))*},n) = O(n);

where the hidden constant depends on k and m.

Conjecture 5.1 implies Conjecture 1.1. Conjecture 5.1 is known to be
true for k = 1, since S;(m) are N-shaped sequences [11,15]. Hence, the first
open case is S9(2) = abacdcacdbd (which is the same as (S5(2))%). How-
ever, as we mentioned in the Introduction, even the weaker conjecture, that
Ex({ababa, ab cacbc},n) = O(n), is still open.

5.1 Related open problems

e What if we do not require C' to be a parabola, but only a convex curve? It
still seems impossible to implement the above-mentioned construction.

» The longest Davenport—Schinzel sequences of order 4 (ababab-free) have
length @(n . 20‘(")). However, no one knows how to realize them as lower-
envelope sequences of parabolic segments. Perhaps it is impossible. One
could start by finding forbidden patterns here as well.

» Higher dimensions: Raz [20] recently proved that the combinatorial com-
plexity of the outer zone of the boundary of a convex body in an arrangement
of hyperplanes in R? is O(n?"1). The complexity of the inner zone is only
known to be O(n?!logn) (Aronov et al. [1]). Whether the latter is also
linear in n is an open question.
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