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Abstract

Grinblat (2002) asks the following question in the context of algebras of sets: What
is the smallest number v = v(n) such that, if Ay,..., A, are n equivalence relations
on a common finite ground set X, such that for each ¢ there are at least v elements
of X that belong to A;-equivalence classes of size larger than 1, then X has a
rainbow matching—a set of 2n distinct elements aq, by, ..., an, by, such that a; is
A;-equivalent to b; for each 7

Grinblat has shown that v(n) < 10n/3 4+ O(y/n). He asks whether v(n) = 3n — 2
for all n > 4. In this paper we improve the upper bound (for all large enough n) to
v(n) < 16n/5+ O(1).
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1 Introduction

Let n be a positive integer. Let X be a finite “ground set”, and let Ay,..., A,
be n equivalence relations on X (or equivalently, partitions of X into subsets).
If a,b € X are equivalent under A;, then we say for short that a,b are i-
equivalent, and we write a ~; b. The i-equivalence class of an element a € X
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Fig. 1. Here |K;| = 8 for all i = 1,2, 3, and yet there is no rainbow matching.

is given by [a]; = {b € X : a ~; b}. The kernel of A;, denoted K;, is defined
as the set of elements of X that are i-equivalent to some element other than
themselves:

K, ={a€ X :|[a];| > 1}.

(It will become evident that one can assume without loss of generality that
all equivalence classes in each A; have size at most 3.)

We shall call a set of 2n distinct elements aq, b1, ..., a,,b, € X a rainbow
matching if a; ~; b; for each i. (See e.g. Glebov et al. [1] for the term.)

Grinblat has studied this notion in the context of algebras of sets [2,3,4].
He asks for the minimum number v = v(n) such that, if |K;| > v for all 4,
then A;,..., A, have a rainbow matching [2].

Grinblat observed that v(n) > 3n —2: If we let all equivalence relations A;
be identical, consisting of n — 1 equivalence classes of size 3, then they have
no rainbow matching even though |K;| = 3n — 3.

Grinblat also showed that v(3) = 9. The lower bound v(3) > 8 is illustrated
in Figure 1.

Grinblat recently proved that v(n) < {1071 /34 +/2n/ 3—‘ [4] (announced in

a slightly weaker form in [3]). He asks whether v(n) = 3n — 2 for all n > 4.
In this paper we improve the upper bound to v(n) < 16n/5+ O(1):

Theorem 1.1 Let Ay, ..., A, ben equivalence relations with kernels Ky, ...,
K, respectively. Suppose |K;| > (3 + 1/5)n + ¢ for each i, where ¢ is a large
enough constant.® Then Ay, ..., A, have a rainbow matching.

We prove Theorem 1.1 by a modification of Grinblat’s argument. The
proof follows by induction on the number of equivalence relations n, showing
that given a rainbow matching (of n — 1 pairs) for the equivalence relations
Ag, ..., A,, it is possible to obtain a rainbow matching for Ay, A, ..., A,.

The proof follows in several steps, where in each step, we observe that it
is either possible to complete a full fledged rainbow matching, or to slightly

3 Tt is enough to take ¢ = 5000.
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Fig. 2. Left-side and right-side components.

extend the previous formation at hand. The final formation allows us to
complete the rainbow matching, concluding the proof.

2 Proof sketch of Theorem 1.1

Assume by induction on n that A,, ..., A, have a rainbow matching ay ~5 bs,
as ~'3 bg, vy Qp bn Let B = {CLQ,bQ, Ce ,an,bn}.

Observation 2.1 If there exist two distinct elements a; ~1 by with ay,b; €
X \ B then we are immediately done.

Lemma 2.2 Let t = |n/5]. Either we can easily complete a rainbow match-
ing, or else we can find t — 1 distinct indices in {2,...,n}, which without
loss of generality we assume to be 2, ... t, and we can find 2(t — 1) pairwise
distinct elements co,dy, . .., ct,dy € X \ B, such that a; ~;—1 ¢; and b; ~;_1 d;
forall2 <i<t.

Proof. Suppose by induction that we have already found ¢y, ds, ..., ¢;, d;.
Let B' = BU{ca,ds, ..., ¢;, d;}. Partition B’ into “components” as follows:

CQ = {CLQ,bQ, Co, dg}, cey Cz = {ai, bi, C;, dl}, Ci+1 = {ai+1, bi+1}, cey Cn =

{an,b,}. Let Crep = Co U -+~ U C; and Cligry = Cipq U - - - U C,,. See Figure 2.

Observation 2.3 If there exist two distinct elements © ~; y, with x,y €
K; \ Ciight, then we are easily done unless one of x,y belongs to {a;,c;} and
the other one belongs to {b;,d;} for the same indexr 2 < j <.

Hence, let us charge each element of K; to exactly one component, as
follows:

Charging Scheme 1 Let z € K;. If x € B’, then z is charged to the compo-
nent it belongs to. Otherwise, by Observation 2.3, x must be i-equivalent to
some y € Chighe; then we charge z to y’s component. (If x can be charged to
more than one right-side component, then we choose one of them arbitrarily.)



The total number of charges is equal to | K;|, which is at least (3+1/5)n+c.
By Observation 2.3 and the transitivity of ~;, no component can get more
than four charges. Hence, if ¢ < n/5, then there must be a component in
Clignt that received four charges. Without loss of generality it is Cj 1. Of
the four elements charged to it, the two not belonging to it are the desired
Ci+1, di+1-

This concludes the proof of Lemma 2.2. O

Define the set B’, the components Cs, ..., C,, and the sets Cier, and Chigng
as above, with ¢ in place of 7. Hence, City = Co U --- U C; and Cligny =
Ci1U---UC,.

We now use the following charging scheme for A; and A;:

Charging Scheme 2 Consider an element z € K. If x € B, then we 1-
charge x to the component it belongs to. Otherwise, by Observation 2.1,
x must be l-equivalent to some element y € B; then we 1-charge x to the
component that contains y.

Consider the elements of K;. We t-charge every element z € (K; N B) to
the component it belongs to. If ¢; ~; d; for some 7, then we t-charge both
elements to the component C; that contains them (even if they are also t¢-
equivalent to some element of Cige). For every z € K; not covered by the
above cases, by Observation 2.3 there must be a component C; that contains
an element y ~; z (furthermore, either C; is a right-side component, or else
z € C}); we charge z to C;.

Lemma 2.4 In Charging Scheme 2, no component C; can receive more than
four 1-charges, or more than four t-charges.

For each 2 < i < n, let o; (resp. 7;) be the number of 1-charges (resp. t-
charges) that component C; received; let S; (resp. T;) be set of elements not
in {a;, b;} that were 1-charged (resp. t-charged) to Cj; and let U; = S; U T;.

Lemma 2.5 Suppose that there exist five different left-side components that
receive at least 7 charges each; namely, suppose there exist Cy, ..., Ci., with
2<4; <o <5 < t, such that o;, + 7, > 7 for each 1 < k < 5. Then we
can complete a rainbow matching.

No component can receive more than 8 charges. Hence, by Lemma 2.5,
there must be at least n/5 + ¢ — 4 > n/5 right-side components that receive
at least 7 charges each. Call such components “heavy”, and let H be the set
of their indices; namely, let

H={ie{t+1,...;,n}:0i+7>T}



Lemma 2.6 Let C;,C;, 1,5 € H, be two heavy components. Then we can find
four distinct elements vi,v, € C; U Cj, wi,wy € U; UUj, such that vy ~1 wy
and vy ~y Wo.

Furthermore, for any two fized elements q,r € U; UU;, it is always possible
to do so guaranteeing that exactly one of g, r belongs to {wy,ws}.

For i € H, let us call a left-side component i-tainted if it intersects T;. For
each i there are at most two ¢-tainted components.

Lemma 2.7 Let C;, 1 € H be a heavy component.

(a) If there exist two distinct elements x ~; y, both outside B U S;, then we
are done.

b) Let C; be a left-side component that is not i-tainted. Then, if one of a;, b,
J js V5
is i-equivalent to an element outside B' U T;, then we are done.

Let us i-charge the elements of K; \ U; to components according to the
following charging scheme (which is similar to Charging Scheme 1):

Charging Scheme 3 Let i € H. Consider an element z € K;\U;. If x € B/,
then z is i-charged to the component it belongs to. Otherwise, if z is i-
equivalent to an element of S; or to a; or b; where component Cj is i-tainted,
then z is not ¢-charged. Otherwise, x must be i-equivalent to an element
y € Clignt; then we charge x to the component that contains y.

Lemma 2.8 In Charging Scheme 3, no component receives more than four
t-charges.

We have |K; \ U;| > |K;| — 4, and there are at most six elements of this
set that are not charged. Hence, there are at least n/5 + ¢ — 10 components
that received at least four charges. Out of them, at least ¢ — 10 are right-side
components.

Let us apply this charging for all ¢ € H. By the pigeonhole principle, there
must be a “lucky” right-side component Cj» that receives four i-charges for
all i € H', for some subset H' C H of size |H'| = (¢ — 10)/4. For each index
k € H', let W}, be the set of two elements not in Cj- that were k-charged to
Cj+. Note that each Wj, is disjoint from B’ U Uj,.

Let k1, ko be a pair of distinct indices in H'. We would like to choose four
distinct elements w, x,y, z, with Cj» = {w, z} and y, z € W, UWj,, such that
w ~, y and = ~y, z. If such a choice is not possible, then call the pair ky, ko
“conflicting”.
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Fig. 3. Proof of Lemma 2.11.

Lemma 2.9 There exists a subset of H' of size |H'|/2, such that no two
indices in it are conflicting.

Let H” C H’ be such a subset, but only of size |H"| = ¢/16. Let W =
Urerr Wi

Let k1, ko be a pair of indices in H”. We already know that ki, ko are not
conflicting. We further would like to have Wy, N Uy, = Wy, NU, = 0. If that
is the case, call the pair ki, ky “compatible”.

Lemma 2.10 Suppose the constant ¢ is chosen large enough. Then most
pairs of indices ki, ko € H" are compatible; in particular, there exists such a
compatible pair of indices.

Lemma 2.11 If there ewist two elements x ~jx y, both outside
Y = Cug UW U (| o),
keH"

then we are done.
Proof sketch See Figure 3. O

But a pair z, y as in Lemma 2.11 must exist, since otherwise, every element
of K;+» would either belong to Y or be j*-equivalent to a different element
of Y. Observe that |Y| < 2(4/5)n + ¢/8 + ¢/4. That accounts for only
2|Y| < (3+1/5)n+3c/4 elements of K+, which is not enough. This concludes
the proof of Theorem 1.1. O
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