

Available online at www.sciencedirect.com

ScienceDirect

Electronic Notes in DISCRETE MATHEMATICS

www.elsevier.com/locate/endm

Rainbow matchings and algebras of sets

Gabriel Nivasch ^{a,1} Eran Omri ^{a,2}

^a Department of Computer Science and Mathematics, Ariel University, Ariel, Israel

Abstract

Grinblat (2002) asks the following question in the context of algebras of sets: What is the smallest number $\mathfrak{v} = \mathfrak{v}(n)$ such that, if A_1, \ldots, A_n are n equivalence relations on a common finite ground set X, such that for each i there are at least \mathfrak{v} elements of X that belong to A_i -equivalence classes of size larger than 1, then X has a rainbow matching—a set of 2n distinct elements $a_1, b_1, \ldots, a_n, b_n$, such that a_i is A_i -equivalent to b_i for each i?

Grinblat has shown that $\mathfrak{v}(n) \leq 10n/3 + O(\sqrt{n})$. He asks whether $\mathfrak{v}(n) = 3n - 2$ for all $n \geq 4$. In this paper we improve the upper bound (for all large enough n) to $\mathfrak{v}(n) \leq 16n/5 + O(1)$.

Keywords: rainbow matching, algebra of sets, equivalence relation

1 Introduction

Let n be a positive integer. Let X be a finite "ground set", and let A_1, \ldots, A_n be n equivalence relations on X (or equivalently, partitions of X into subsets). If $a, b \in X$ are equivalent under A_i , then we say for short that a, b are i-equivalent, and we write $a \sim_i b$. The i-equivalence class of an element $a \in X$

¹ Email: gabrieln@ariel.ac.il

² Email: omrier@ariel.ac.il

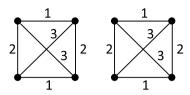


Fig. 1. Here $|K_i| = 8$ for all i = 1, 2, 3, and yet there is no rainbow matching.

is given by $[a]_i = \{b \in X : a \sim_i b\}$. The *kernel* of A_i , denoted K_i , is defined as the set of elements of X that are *i*-equivalent to some element other than themselves:

$$K_i = \{a \in X : |[a]_i| > 1\}.$$

(It will become evident that one can assume without loss of generality that all equivalence classes in each A_i have size at most 3.)

We shall call a set of 2n distinct elements $a_1, b_1, \ldots, a_n, b_n \in X$ a rainbow matching if $a_i \sim_i b_i$ for each i. (See e.g. Glebov et al. [1] for the term.)

Grinblat has studied this notion in the context of algebras of sets [2,3,4]. He asks for the minimum number $\mathfrak{v} = \mathfrak{v}(n)$ such that, if $|K_i| \geq \mathfrak{v}$ for all i, then A_1, \ldots, A_n have a rainbow matching [2].

Grinblat observed that $\mathbf{v}(n) \geq 3n-2$: If we let all equivalence relations A_i be identical, consisting of n-1 equivalence classes of size 3, then they have no rainbow matching even though $|K_i| = 3n-3$.

Grinblat also showed that $\mathfrak{v}(3) = 9$. The lower bound $\mathfrak{v}(3) > 8$ is illustrated in Figure 1.

Grinblat recently proved that $\mathfrak{v}(n) \leq \left\lceil 10n/3 + \sqrt{2n/3} \right\rceil$ [4] (announced in a slightly weaker form in [3]). He asks whether $\mathfrak{v}(n) = 3n - 2$ for all $n \geq 4$.

In this paper we improve the upper bound to $\mathfrak{v}(n) \leq 16n/5 + O(1)$:

Theorem 1.1 Let A_1, \ldots, A_n be n equivalence relations with kernels K_1, \ldots, K_n , respectively. Suppose $|K_i| \geq (3+1/5)n + c$ for each i, where c is a large enough constant. Then A_1, \ldots, A_n have a rainbow matching.

We prove Theorem 1.1 by a modification of Grinblat's argument. The proof follows by induction on the number of equivalence relations n, showing that given a rainbow matching (of n-1 pairs) for the equivalence relations A_2, \ldots, A_n , it is possible to obtain a rainbow matching for A_1, A_2, \ldots, A_n .

The proof follows in several steps, where in each step, we observe that it is either possible to complete a full fledged rainbow matching, or to slightly

 $[\]overline{}^3$ It is enough to take c = 5000.

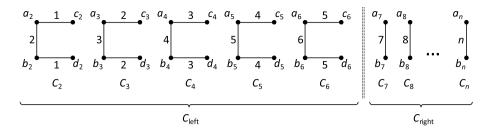


Fig. 2. Left-side and right-side components.

extend the previous formation at hand. The final formation allows us to complete the rainbow matching, concluding the proof.

2 Proof sketch of Theorem 1.1

Assume by induction on n that A_2, \ldots, A_n have a rainbow matching $a_2 \sim_2 b_2$, $a_3 \sim_3 b_3, \ldots, a_n \sim_n b_n$. Let $B = \{a_2, b_2, \ldots, a_n, b_n\}$.

Observation 2.1 If there exist two distinct elements $a_1 \sim_1 b_1$ with $a_1, b_1 \in X \setminus B$ then we are immediately done.

Lemma 2.2 Let $t = \lfloor n/5 \rfloor$. Either we can easily complete a rainbow matching, or else we can find t-1 distinct indices in $\{2,\ldots,n\}$, which without loss of generality we assume to be $2,\ldots,t$, and we can find 2(t-1) pairwise distinct elements $c_2,d_2,\ldots,c_t,d_t \in X \setminus B$, such that $a_i \sim_{i-1} c_i$ and $b_i \sim_{i-1} d_i$ for all $2 \leq i \leq t$.

Proof. Suppose by induction that we have already found $c_2, d_2, \ldots, c_i, d_i$.

Let $B' = B \cup \{c_2, d_2, \dots, c_i, d_i\}$. Partition B' into "components" as follows: $C_2 = \{a_2, b_2, c_2, d_2\}, \dots, C_i = \{a_i, b_i, c_i, d_i\}; C_{i+1} = \{a_{i+1}, b_{i+1}\}, \dots, C_n = \{a_n, b_n\}$. Let $C_{\text{left}} = C_2 \cup \dots \cup C_i$ and $C_{\text{right}} = C_{i+1} \cup \dots \cup C_n$. See Figure 2.

Observation 2.3 If there exist two distinct elements $x \sim_i y$, with $x, y \in K_i \setminus C_{\text{right}}$, then we are easily done unless one of x, y belongs to $\{a_j, c_j\}$ and the other one belongs to $\{b_i, d_i\}$ for the same index $2 \le j \le i$.

Hence, let us charge each element of K_i to exactly one component, as follows:

Charging Scheme 1 Let $x \in K_i$. If $x \in B'$, then x is charged to the component it belongs to. Otherwise, by Observation 2.3, x must be i-equivalent to some $y \in C_{\text{right}}$; then we charge x to y's component. (If x can be charged to more than one right-side component, then we choose one of them arbitrarily.)

The total number of charges is equal to $|K_i|$, which is at least (3+1/5)n+c. By Observation 2.3 and the transitivity of \sim_i , no component can get more than four charges. Hence, if $i \leq n/5$, then there must be a component in C_{right} that received four charges. Without loss of generality it is C_{i+1} . Of the four elements charged to it, the two not belonging to it are the desired c_{i+1}, d_{i+1} .

This concludes the proof of Lemma 2.2.

Define the set B', the components C_2, \ldots, C_n , and the sets C_{left} and C_{right} as above, with t in place of i. Hence, $C_{\text{left}} = C_2 \cup \cdots \cup C_t$ and $C_{\text{right}} = C_{t+1} \cup \cdots \cup C_n$.

We now use the following charging scheme for A_1 and A_t :

Charging Scheme 2 Consider an element $x \in K_1$. If $x \in B$, then we 1-charge x to the component it belongs to. Otherwise, by Observation 2.1, x must be 1-equivalent to some element $y \in B$; then we 1-charge x to the component that contains y.

Consider the elements of K_t . We t-charge every element $z \in (K_t \cap B)$ to the component it belongs to. If $c_i \sim_t d_i$ for some i, then we t-charge both elements to the component C_i that contains them (even if they are also t-equivalent to some element of C_{right}). For every $z \in K_t$ not covered by the above cases, by Observation 2.3 there must be a component C_i that contains an element $y \sim_t z$ (furthermore, either C_i is a right-side component, or else $z \in C_i$); we charge z to C_i .

Lemma 2.4 In Charging Scheme 2, no component C_i can receive more than four 1-charges, or more than four t-charges.

For each $2 \leq i \leq n$, let σ_i (resp. τ_i) be the number of 1-charges (resp. t-charges) that component C_i received; let S_i (resp. T_i) be set of elements not in $\{a_i, b_i\}$ that were 1-charged (resp. t-charged) to C_i ; and let $U_i = S_i \cup T_i$.

Lemma 2.5 Suppose that there exist five different left-side components that receive at least 7 charges each; namely, suppose there exist C_{i_1}, \ldots, C_{i_5} , with $2 \le i_1 < \cdots < i_5 \le t$, such that $\sigma_{i_k} + \tau_{i_k} \ge 7$ for each $1 \le k \le 5$. Then we can complete a rainbow matching.

No component can receive more than 8 charges. Hence, by Lemma 2.5, there must be at least $n/5 + c - 4 \ge n/5$ right-side components that receive at least 7 charges each. Call such components "heavy", and let H be the set of their indices; namely, let

$$H = \{i \in \{t+1, \dots, n\} : \sigma_i + \tau_i \ge 7\}.$$

Lemma 2.6 Let $C_i, C_j, i, j \in H$, be two heavy components. Then we can find four distinct elements $v_1, v_2 \in C_i \cup C_j$, $w_1, w_2 \in U_i \cup U_j$, such that $v_1 \sim_1 w_1$ and $v_2 \sim_t w_2$.

Furthermore, for any two fixed elements $q, r \in U_i \cup U_j$, it is always possible to do so guaranteeing that exactly one of q, r belongs to $\{w_1, w_2\}$.

For $i \in H$, let us call a left-side component *i-tainted* if it intersects T_i . For each *i* there are at most two *i*-tainted components.

Lemma 2.7 Let C_i , $i \in H$ be a heavy component.

- (a) If there exist two distinct elements $x \sim_i y$, both outside $B \cup S_i$, then we are done.
- (b) Let C_j be a left-side component that is not i-tainted. Then, if one of a_j, b_j is i-equivalent to an element outside $B' \cup T_i$, then we are done.

Let us *i*-charge the elements of $K_i \setminus U_i$ to components according to the following charging scheme (which is similar to Charging Scheme 1):

Charging Scheme 3 Let $i \in H$. Consider an element $x \in K_i \setminus U_i$. If $x \in B'$, then x is i-charged to the component it belongs to. Otherwise, if x is i-equivalent to an element of S_i or to a_j or b_j where component C_j is i-tainted, then x is not i-charged. Otherwise, x must be i-equivalent to an element $y \in C_{\text{right}}$; then we charge x to the component that contains y.

Lemma 2.8 In Charging Scheme 3, no component receives more than four *i-charges*.

We have $|K_i \setminus U_i| \ge |K_i| - 4$, and there are at most six elements of this set that are not charged. Hence, there are at least n/5 + c - 10 components that received at least four charges. Out of them, at least c - 10 are right-side components.

Let us apply this charging for all $i \in H$. By the pigeonhole principle, there must be a "lucky" right-side component C_{j^*} that receives four *i*-charges for all $i \in H'$, for some subset $H' \subseteq H$ of size |H'| = (c-10)/4. For each index $k \in H'$, let W_k be the set of two elements not in C_{j^*} that were *k*-charged to C_{j^*} . Note that each W_k is disjoint from $B' \cup U_k$.

Let k_1, k_2 be a pair of distinct indices in H'. We would like to choose four distinct elements w, x, y, z, with $C_{j^*} = \{w, x\}$ and $y, z \in W_{k_1} \cup W_{k_2}$, such that $w \sim_{k_1} y$ and $x \sim_{k_2} z$. If such a choice is not possible, then call the pair k_1, k_2 "conflicting".

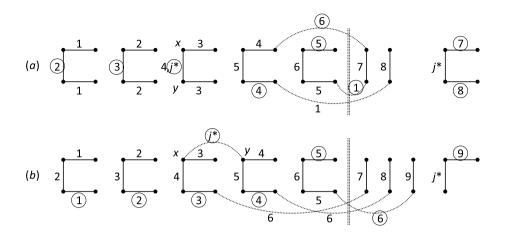


Fig. 3. Proof of Lemma 2.11.

Lemma 2.9 There exists a subset of H' of size |H'|/2, such that no two indices in it are conflicting.

Let $H'' \subset H'$ be such a subset, but only of size |H''| = c/16. Let $W = \bigcup_{k \in H''} W_k$.

Let k_1, k_2 be a pair of indices in H''. We already know that k_1, k_2 are not conflicting. We further would like to have $W_{k_1} \cap U_{k_2} = W_{k_2} \cap U_{k_1} = \emptyset$. If that is the case, call the pair k_1, k_2 "compatible".

Lemma 2.10 Suppose the constant c is chosen large enough. Then most pairs of indices $k_1, k_2 \in H''$ are compatible; in particular, there exists such a compatible pair of indices.

Lemma 2.11 If there exist two elements $x \sim_{j^*} y$, both outside

$$Y = C_{\text{right}} \cup W \cup (\bigcup_{k \in H''} U_k),$$

then we are done.

Proof sketch See Figure 3.

But a pair x, y as in Lemma 2.11 must exist, since otherwise, every element of K_{j^*} would either belong to Y or be j^* -equivalent to a different element of Y. Observe that $|Y| \leq 2(4/5)n + c/8 + c/4$. That accounts for only $2|Y| \leq (3+1/5)n + 3c/4$ elements of K_{j^*} , which is not enough. This concludes the proof of Theorem 1.1.

Acknowledgements

Thanks to L. Š. (Yehuda) Grinblat for suggesting us to look at this problem and for helpful discussions. Thanks also to Anat Paskin-Cherniavsky for helpful discussions.

References

- [1] R. Glebov, B. Sudakov, and T. Szabó, How many colors guarantee a rainbow matching?, *Electron. J. Combin.* 21, paper 1.27, 2014.
- [2] L. Š. Grinblat, Algebras of sets and combinatorics, Vol. 214 of Translations of Mathematical Monographs, AMS, 2002.
- [3] L. Š. Grinblat, Theorems on sets not belonging to algebras, *Electron. Res. Announc. Amer. Math. Soc.*, 10:51–57, 2004.
- [4] L. Š. Grinblat, Families of sets not belonging to algebras and combinatorics of finite sets of ultrafilters, *J. Inequal. Appl.*, 2015:116, 2015.