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Abstract

Grinblat (2002) asks the following question in the context of algebras of sets: What
is the smallest number v = v(n) such that, if A1, . . . , An are n equivalence relations
on a common finite ground set X, such that for each i there are at least v elements
of X that belong to Ai-equivalence classes of size larger than 1, then X has a
rainbow matching—a set of 2n distinct elements a1, b1, . . . , an, bn, such that ai is
Ai-equivalent to bi for each i?

Grinblat has shown that v(n) ≤ 10n/3 +O(
√
n). He asks whether v(n) = 3n− 2

for all n ≥ 4. In this paper we improve the upper bound (for all large enough n) to
v(n) ≤ 16n/5 +O(1).
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1 Introduction

Let n be a positive integer. Let X be a finite “ground set”, and let A1, . . . , An

be n equivalence relations on X (or equivalently, partitions of X into subsets).
If a, b ∈ X are equivalent under Ai, then we say for short that a, b are i-
equivalent, and we write a ∼i b. The i-equivalence class of an element a ∈ X
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Fig. 1. Here |Ki| = 8 for all i = 1, 2, 3, and yet there is no rainbow matching.

is given by [a]i = {b ∈ X : a ∼i b}. The kernel of Ai, denoted Ki, is defined
as the set of elements of X that are i-equivalent to some element other than
themselves:

Ki = {a ∈ X : |[a]i| > 1}.
(It will become evident that one can assume without loss of generality that

all equivalence classes in each Ai have size at most 3.)

We shall call a set of 2n distinct elements a1, b1, . . . , an, bn ∈ X a rainbow
matching if ai ∼i bi for each i. (See e.g. Glebov et al. [1] for the term.)

Grinblat has studied this notion in the context of algebras of sets [2,3,4].
He asks for the minimum number v = v(n) such that, if |Ki| ≥ v for all i,
then A1, . . . , An have a rainbow matching [2].

Grinblat observed that v(n) ≥ 3n−2: If we let all equivalence relations Ai

be identical, consisting of n − 1 equivalence classes of size 3, then they have
no rainbow matching even though |Ki| = 3n− 3.

Grinblat also showed that v(3) = 9. The lower bound v(3) > 8 is illustrated
in Figure 1.

Grinblat recently proved that v(n) ≤
⌈
10n/3 +

√
2n/3

⌉
[4] (announced in

a slightly weaker form in [3]). He asks whether v(n) = 3n− 2 for all n ≥ 4.

In this paper we improve the upper bound to v(n) ≤ 16n/5 +O(1):

Theorem 1.1 Let A1, . . . , An be n equivalence relations with kernels K1, . . . ,
Kn, respectively. Suppose |Ki| ≥ (3 + 1/5)n+ c for each i, where c is a large
enough constant. 3 Then A1, . . . , An have a rainbow matching.

We prove Theorem 1.1 by a modification of Grinblat’s argument. The
proof follows by induction on the number of equivalence relations n, showing
that given a rainbow matching (of n − 1 pairs) for the equivalence relations
A2, . . . , An, it is possible to obtain a rainbow matching for A1, A2, . . . , An.

The proof follows in several steps, where in each step, we observe that it
is either possible to complete a full fledged rainbow matching, or to slightly

3 It is enough to take c = 5000.



Fig. 2. Left-side and right-side components.

extend the previous formation at hand. The final formation allows us to
complete the rainbow matching, concluding the proof.

2 Proof sketch of Theorem 1.1

Assume by induction on n that A2, . . . , An have a rainbow matching a2 ∼2 b2,
a3 ∼3 b3, . . ., an ∼n bn. Let B = {a2, b2, . . . , an, bn}.
Observation 2.1 If there exist two distinct elements a1 ∼1 b1 with a1, b1 ∈
X \ B then we are immediately done.

Lemma 2.2 Let t = �n/5�. Either we can easily complete a rainbow match-
ing, or else we can find t − 1 distinct indices in {2, . . . , n}, which without
loss of generality we assume to be 2, . . . , t, and we can find 2(t − 1) pairwise
distinct elements c2, d2, . . . , ct, dt ∈ X \ B, such that ai ∼i−1 ci and bi ∼i−1 di
for all 2 ≤ i ≤ t.

Proof. Suppose by induction that we have already found c2, d2, . . . , ci, di.

Let B′ = B∪{c2, d2, . . . , ci, di}. Partition B′ into “components” as follows:
C2 = {a2, b2, c2, d2}, . . ., Ci = {ai, bi, ci, di}; Ci+1 = {ai+1, bi+1}, . . ., Cn =
{an, bn}. Let Cleft = C2 ∪ · · · ∪ Ci and Cright = Ci+1 ∪ · · · ∪ Cn. See Figure 2.

Observation 2.3 If there exist two distinct elements x ∼i y, with x, y ∈
Ki \ Cright, then we are easily done unless one of x, y belongs to {aj, cj} and
the other one belongs to {bj, dj} for the same index 2 ≤ j ≤ i.

Hence, let us charge each element of Ki to exactly one component, as
follows:

Charging Scheme 1 Let x ∈ Ki. If x ∈ B′, then x is charged to the compo-
nent it belongs to. Otherwise, by Observation 2.3, x must be i-equivalent to
some y ∈ Cright; then we charge x to y’s component. (If x can be charged to
more than one right-side component, then we choose one of them arbitrarily.)



The total number of charges is equal to |Ki|, which is at least (3+1/5)n+c.
By Observation 2.3 and the transitivity of ∼i, no component can get more
than four charges. Hence, if i ≤ n/5, then there must be a component in
Cright that received four charges. Without loss of generality it is Ci+1. Of
the four elements charged to it, the two not belonging to it are the desired
ci+1, di+1.

This concludes the proof of Lemma 2.2. �

Define the set B′, the components C2, . . . , Cn, and the sets Cleft and Cright

as above, with t in place of i. Hence, Cleft = C2 ∪ · · · ∪ Ct and Cright =
Ct+1 ∪ · · · ∪ Cn.

We now use the following charging scheme for A1 and At:

Charging Scheme 2 Consider an element x ∈ K1. If x ∈ B, then we 1-
charge x to the component it belongs to. Otherwise, by Observation 2.1,
x must be 1-equivalent to some element y ∈ B; then we 1-charge x to the
component that contains y.

Consider the elements of Kt. We t-charge every element z ∈ (Kt ∩ B) to
the component it belongs to. If ci ∼t di for some i, then we t-charge both
elements to the component Ci that contains them (even if they are also t-
equivalent to some element of Cright). For every z ∈ Kt not covered by the
above cases, by Observation 2.3 there must be a component Ci that contains
an element y ∼t z (furthermore, either Ci is a right-side component, or else
z ∈ Ci); we charge z to Ci.

Lemma 2.4 In Charging Scheme 2, no component Ci can receive more than
four 1-charges, or more than four t-charges.

For each 2 ≤ i ≤ n, let σi (resp. τi) be the number of 1-charges (resp. t-
charges) that component Ci received; let Si (resp. Ti) be set of elements not
in {ai, bi} that were 1-charged (resp. t-charged) to Ci; and let Ui = Si ∪ Ti.

Lemma 2.5 Suppose that there exist five different left-side components that
receive at least 7 charges each; namely, suppose there exist Ci1 , . . . , Ci5, with
2 ≤ i1 < · · · < i5 ≤ t, such that σik + τik ≥ 7 for each 1 ≤ k ≤ 5. Then we
can complete a rainbow matching.

No component can receive more than 8 charges. Hence, by Lemma 2.5,
there must be at least n/5 + c − 4 ≥ n/5 right-side components that receive
at least 7 charges each. Call such components “heavy”, and let H be the set
of their indices; namely, let

H = {i ∈ {t+ 1, . . . , n} : σi + τi ≥ 7}.



Lemma 2.6 Let Ci, Cj, i, j ∈ H, be two heavy components. Then we can find
four distinct elements v1, v2 ∈ Ci ∪ Cj, w1, w2 ∈ Ui ∪ Uj, such that v1 ∼1 w1

and v2 ∼t w2.

Furthermore, for any two fixed elements q, r ∈ Ui∪Uj, it is always possible
to do so guaranteeing that exactly one of q, r belongs to {w1, w2}.

For i ∈ H, let us call a left-side component i-tainted if it intersects Ti. For
each i there are at most two i-tainted components.

Lemma 2.7 Let Ci, i ∈ H be a heavy component.

(a) If there exist two distinct elements x ∼i y, both outside B ∪ Si, then we
are done.

(b) Let Cj be a left-side component that is not i-tainted. Then, if one of aj, bj
is i-equivalent to an element outside B′ ∪ Ti, then we are done.

Let us i-charge the elements of Ki \ Ui to components according to the
following charging scheme (which is similar to Charging Scheme 1):

Charging Scheme 3 Let i ∈ H. Consider an element x ∈ Ki \Ui. If x ∈ B′,
then x is i-charged to the component it belongs to. Otherwise, if x is i-
equivalent to an element of Si or to aj or bj where component Cj is i-tainted,
then x is not i-charged. Otherwise, x must be i-equivalent to an element
y ∈ Cright; then we charge x to the component that contains y.

Lemma 2.8 In Charging Scheme 3, no component receives more than four
i-charges.

We have |Ki \ Ui| ≥ |Ki| − 4, and there are at most six elements of this
set that are not charged. Hence, there are at least n/5 + c − 10 components
that received at least four charges. Out of them, at least c− 10 are right-side
components.

Let us apply this charging for all i ∈ H. By the pigeonhole principle, there
must be a “lucky” right-side component Cj� that receives four i-charges for
all i ∈ H ′, for some subset H ′ ⊆ H of size |H ′| = (c − 10)/4. For each index
k ∈ H ′, let Wk be the set of two elements not in Cj∗ that were k-charged to
Cj∗ . Note that each Wk is disjoint from B′ ∪ Uk.

Let k1, k2 be a pair of distinct indices in H ′. We would like to choose four
distinct elements w, x, y, z, with Cj� = {w, x} and y, z ∈ Wk1 ∪Wk2 , such that
w ∼k1 y and x ∼k2 z. If such a choice is not possible, then call the pair k1, k2
“conflicting”.



Fig. 3. Proof of Lemma 2.11.

Lemma 2.9 There exists a subset of H ′ of size |H ′|/2, such that no two
indices in it are conflicting.

Let H ′′ ⊂ H ′ be such a subset, but only of size |H ′′| = c/16. Let W =⋃
k∈H′′ Wk.

Let k1, k2 be a pair of indices in H ′′. We already know that k1, k2 are not
conflicting. We further would like to have Wk1 ∩Uk2 = Wk2 ∩Uk1 = ∅. If that
is the case, call the pair k1, k2 “compatible”.

Lemma 2.10 Suppose the constant c is chosen large enough. Then most
pairs of indices k1, k2 ∈ H ′′ are compatible; in particular, there exists such a
compatible pair of indices.

Lemma 2.11 If there exist two elements x ∼j� y, both outside

Y = Cright ∪W ∪ (
⋃

k∈H′′
Uk),

then we are done.

Proof sketch See Figure 3. �

But a pair x, y as in Lemma 2.11 must exist, since otherwise, every element
of Kj� would either belong to Y or be j�-equivalent to a different element
of Y . Observe that |Y | ≤ 2(4/5)n + c/8 + c/4. That accounts for only
2|Y | ≤ (3+1/5)n+3c/4 elements of Kj� , which is not enough. This concludes
the proof of Theorem 1.1. �
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