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Abstract

A classic theorem in combinatorial design theory is Fisher’s inequality, which states
that a family F of subsets of [n] = {1, 2, . . . , n} with all pairwise intersections of size
λ can have at most n non-empty sets. One may weaken the condition by requiring
that for every set in F , all but at most k of its pairwise intersections have size λ.
We call such families k-almost λ-Fisher. Vu was the first to study the maximum
size of such families, proving that for k = 1 the largest family has 2n− 2 sets, and
characterising when equality is attained. We substantially refine his result, showing
how the size of the maximum family depends on λ. In particular we prove that for
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small λ one essentially recovers Fisher’s bound. We also solve the next open case
of k = 2 and obtain the first non-trivial upper bound for general k.

Keywords: Fisher’s inequality, Fisher families, almost-Fisher, extremal set theory,
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1 Introduction

1.1 Restricted intersections

Extremal set theory is a rapidly developing area of combinatorics and has
enjoyed tremendous growth in the past few decades. No doubt this is fuelled by
its deep connections to other areas; extremal set theory both employs methods
from and enjoys applications to diverse fields such as algebra, geometry and
coding theory.

Many problems in extremal set theory are concerned with the pairwise
intersections between sets in a family. Typically one is interested in studying
families that are (in some sense) extremal under certain restrictions on possible
intersection sizes. A natural setting to consider is to require that all pairwise
intersections between sets in a family are of the same size and ask how large
such a family can be. We call a family of sets a λ-Fisher family if any two
distinct sets intersect in λ elements. The foundational result in this direction is
Fisher’s inequality [3], bounding the size of a λ-Fisher family. Fisher’s original
result dealt with more restrictive designs, and was extended to uniform λ-
Fisher families by Bose [1]. The following non-uniform version was proven by
Majumdar [10] and rediscovered by Isbell [8].

Theorem 1.1 A λ-Fisher family over [n] can have at most n non-empty sets.

Note that the non-empty condition is necessary, as when λ = 0, one may
take the empty set in addition to the n singletons. However, when λ > 0, a
λ-Fisher family cannot contain the empty set. The classification of extremal
constructions (i.e. λ-Fisher families over [n] of size n) remains one of the most
important problems in combinatorial design theory. In the case λ = 1, this
reduces to the famous de Bruijn–Erdős theorem [2], for which the extremal
constructions are known precisely.
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Theorem 1.1 has inspired a great deal of research, having been extended
in numerous directions by several renowned mathematicians. Ray-Chaudhuri
and Wilson [12] provided bounds on families where s different intersection
sizes are allowed, and Frankl and Wilson [4] considered the problem where the
sizes of sets and intersections are taken modulo a prime p. These results have
proven remarkably useful in the field of discrete geometry. Another extension
that has attracted plenty of attention in recent years is to restrict the sizes of
k-wise intersections instead of pairwise intersections. This problem was first
raised by Sós [13], and resolved in the uniform setting by Füredi [5]. Vu [15]
studied the problem for intersections modulo 2, and Grolmusz and Sudakov
[7] extended this to systems modulo an arbitrary prime. Exact results in this
setting were obtained by Szabó and Vu [14]. In the non-modular setting,
asymptotically sharp results were provided by Füredi and Sudakov [6].

1.2 Almost-Fisher families

We seek a different extension of Fisher’s inequality. As we have seen, requiring
that all pairwise intersections in a set family F have size λ severely restricts
the size of F . One might hope to find larger families by relaxing the condition
and allowing a few ‘bad’ intersections to appear. The following weakened
version of λ-Fisher families was first introduced by Vu [15]. We call a family
F of sets k-almost λ-Fisher if for every set F ∈ F , there are at most k other
sets F ′ ∈ F \{F} for which |F ∩ F ′| 6= λ. In particular, note that when k = 0
this reduces to the λ-Fisher families defined previously. We are interested
in bounding the size of a k-almost λ-Fisher family over [n], and denote the
largest possible size by

f(n, k, λ) = max
{

|F| : F ⊂ 2[n] is a k-almost λ-Fisher family
}

.

Most results regarding restricted intersections are proven by linear alge-
braic methods, using the restrictions on the system to build a linearly inde-
pendent set of vectors in an appropriate vector space. Dimensional arguments
then provide the required bound on the size of the set family. Allowing some
intersections of different sizes destroys the linear independence of these vec-
tors. However, by marrying the algebraic arguments with some graph theoretic
considerations, we can still recover some bounds on f(n, k, λ).

Given a k-almost λ-Fisher family F , we can define an auxiliary graph
G = G(F) = (V,E), where V = F and {F, F ′} ∈ E if and only if |F ∩ F ′| 6= λ.
Since every set in F can have at most k pairwise intersections not equal to λ, it
follows that the maximum degree of G is at most k. Moreover, an independent
set in G corresponds to a λ-Fisher subfamily of F . Since any such family can



have at most n non-empty sets, and any graph with m vertices and maximum
degree ∆ has an independent set of size at least m/(∆ + 1), we arrive at the
following upper bound for f(n, k, λ), first given in [15].

Proposition 1.2 We have f(n, k, λ) ≤ (k + 1)n+ 1 for any positive integer
n and non-negative integers k and λ. Moreover, if λ 6= 0, we can improve this
bound to f(n, k, λ) ≤ (k + 1)n.

Vu [15] showed that this essentially gives the correct bound when k =
1, and was further able to prove that the extremal constructions arise from
Hadamard matrices.

Theorem 1.3 For n ≥ 3 and for any non-negative λ, f(n, 1, λ) ≤ 2(n − 1).
Moreover, if n ≥ 4 and equality holds, then λ = n/4 and a Hadamard matrix
of order n exists.

For large values of k, however, Vu noted that Proposition 1.2 appears to be
far from the truth, and asked to determine the correct behavior of f(n, k, λ).

2 Our results

In this paper we continue the study of k-almost λ-Fisher families, approaching
the problem of determining f(n, k, λ) from a few different directions. In doing
so, we are able to substantially refine Vu’s result, while also obtaining some
evidence that nk/4 might be the correct asymptotic behavior for large k.

As a warm up, we start with the case λ = 0, and for brevity call a k-almost
0-Fisher family a k-almost disjoint family. We obtain the following bound on
f(n, k, 0), and show for every k that this is tight for infinitely many values of
n.

Theorem 2.1 For any positive integers n and k, we have

f(n, k, 0) ≤
n

k

⌊

k2

4

⌋

+ n+ 1.

In particular, this shows that as k grows, the largest k-almost disjoint
family has size asymptotically nk/4, matching a construction of Vu (for which
λ = 2).

We next turn our attention to the case k = 1. Recall that Vu proved
f(n, 1, λ) ≤ 2n − 2, attainable only if λ = n/4. It is very natural to ask
what happens for other values of λ, i.e., to study the dependence of the func-
tion f(n, 1, λ) on the parameter λ. Here we practically resolve this question,
obtaining the following essentially tight result.



Theorem 2.2 For integers n ≥ 1 and λ ≥ 0, we have

f(n, 1, λ) ≤ max

{

n+ 2, 8min

{

λ,
n− λ

3

}

+ o(λ)

}

.

Note that f(n, 1, λ) is only close to 2n when λ is close to n/4, providing
stability for Theorem 1.3. Moreover, if λ < n/8 or λ > 5n/8, then allowing
one non-λ intersection per set provides almost no gain compared to Fisher’s
inequality.

We provide further evidence of the Hadamard construction being atypically
large by extending Vu’s methods and showing that it is the best possible
even when we allow two bad intersections per set. Once again, we provide
stability by showing that f(n, 2, λ) is much smaller than 2n when λ is far
from n/4. We also show that when λ = o(n), f(n, 2, λ) =

(

3
2
+ o(1)

)

n, which
is asymptotically the bound obtained when λ = 0 in Theorem 2.1. This
suggests that perhaps the λ = 0 case exemplifies the true behaviour of the
function f(n, k, λ) for large k, implying that nk/4 is the correct bound.

Theorem 2.3 For n sufficiently large and 0 ≤ λ ≤ n, we have the bounds

(i) f(n, 2, λ) ≤ 2n− 2.

(ii) f(n, 2, λ) ≤ 1
3

(

5n + 4min
{

λ, n−λ
3

}

+ 7
)

.

(iii) f(n, 2, λ) ≤
(

3
2
+ o(1)

)

n when λ = o(n).

Finally, using our results together with a theorem of Lovász [9] we obtain
the first non-trivial upper bound for general k.

Corollary 2.4 For k ≥ 1, we have f(n, k, λ) ≤ (2n− 2)
⌈

k+1
3

⌉

. Moreover, if
λ = o(n), then f(n, k, λ) ≤

(

3
2
+ o(1)

)

n
⌈

k+1
3

⌉

.

3 Proof ideas

3.1 Theorem 2.1

A key ingredient in our proof of Theorem 2.1 is to note that if F is a k-almost
disjoint family, if F ∈ F and if F ′ /∈ F is a proper subset of F then the
family F ′ = (F ∪ {F ′}) \ {F} is a k-almost disjoint family of the same size
as F but whose sets are in some sense smaller. This shows that in order to
bound f(n, k, 0) one can consider only k-almost disjoint families F which are
downwards closed (i.e. such that if F ∈ F and F ′ ⊆ F then F ′ ∈ F). This
in turn suggests that we should take our sets as small as possible. Indeed,
a simple induction on the number of sets in F of size at least 4 allows one
to reduce the problem to the case when F only has sets of size at most 3.



Furthermore, using shifting arguments we can further restrict our attention
to the case when F only has sets of size at most 2. In this simplified setting
a careful analysis then shows that the theorem holds.

3.2 Theorem 2.2

The proof of Theorem 2.2 has three main ingredients: linear algebra, structural
analysis of 1-almost λ-Fisher families and a bound from coding theory due to
Plotkin [11]. The linear algebra part mostly concerns intersection matrices.
Given a family F = {F1, . . . , Fm} we define its intersection matrix M(F) to
be the m × m matrix with M(F)i,j = |Fi ∩ Fj | − λ. Most of our algebraic
arguments rely on estimating the rank of the intersection matrix. Indeed,
it is not hard to see that if F ⊆ 2[n] then M(F) has rank at most n + 1.
Moreover, if F is a 1-almost λ-Fisher family then, up to relabeling the sets in
F , M(F) is a block diagonal matrix all of whose blocks have size 1 or 2, the
latter corresponding to pairs F, F ′ ∈ F such that |F ∩F ′| 6= λ. Thus, one can
estimate the rank of M(F) based on the ranks of its blocks. If all but at most
one of these blocks have full rank then one can deduce that |F| ≤ n + 2. If
on the other hand there are at least 2 blocks which do not have full rank then
one can deduce structural information about the sets in F . Indeed, in that
case, most pairs of sets in F must have large symmetric difference. A bound
due to Plotkin [11] then implies that F cannot be too large.

3.3 Theorem 2.3

The proof of Theorem 2.3 follows similar lines as the one of Theorem 2.2. The
major difference lies in the fact that, although the intersection matrix M(F)
is still a block diagonal matrix, if F is 2-almost λ-Fisher family then the
blocks of M(F) can have arbitrarily large size. In fact, one can easily see that
these blocks correspond to the connected components of the auxiliary graph
G(F) (defined in section 1.2), and thus, since G(F) has maximum degree 2,
correspond to paths or cycles. Estimating the ranks of these blocks is still
possible but a deeper analysis is needed in order to obtain some structural
information about the sets in F .

3.4 Corollary 2.4

Finally Corollary 2.4 follows immediately from a theorem of Lovász [9] and
Theorem 2.3. Indeed, we know that the auxiliary graph G(F) of a k-almost
λ-Fisher family F has maximum degree at most k. Lovász’s theorem implies



that the vertex set of G(F) can be partitioned into
⌈

k+1
3

⌉

parts, each inducing
a graph of maximum degree at most 2. However, a subset of vertices of G(F)
inducing a graph of maximum degree at most 2 is readily seen to correspond
to a 2-almost λ-Fisher subfamily F ′ ⊆ F . The corollary follows by using
Theorem 2.3 to bound the sizes of the subfamilies F ′.
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