
Hardness of computing width parameters based
on branch decompositions over the vertex set

Sigve Hortemo Sæther 1,2

Department of Informatics
University of Bergen
Bergen, Norway

Martin Vatshelle 1,3

Department of Informatics
University of Bergen
Bergen, Norway

Abstract

Many width parameters of graphs are defined using branch decompositions over
the vertex set of the graph and a corresponding cut-function. In this paper, we
give a general framework for showing hardness of many width parameters defined
in such a way, by reducing from the problem of deciding the exact value of the
cut-function. We show that this implies NP-hardness for deciding both boolean-
width and mim-width, and that mim-width is W[1]-hard, and not in APX unless
NP=ZPP.

Keywords: complexity, boolean-width, branch decomposition, cut-function,
mim-width

1 Funded by the Norwegian Research Council.
2 Email: sigve.sether@ii.uib.no
3 Email: martin.vatshelle@ii.uib.no

Available online at www.sciencedirect.com

www.elsevier.com/locate/endm

http://www.elsevier.com/locate/endm
http://www.sciencedirect.com

1 Introduction

Many width parameters of graphs have been studies in recent years. Some
of the most well known are treewidth, clique-width, branch-width and rank-
width, all of which are NP-hard to compute [1,4,9,6]. Treewidth, branch-width
and rank-width can all be computed in FPT time, whereas it is a long-standing
open problem if computing clique-width is FPT or W[1]-hard. In contrast, for
the parameters boolean-width and mim-width, no hardness results have been
shown (for definitions and an overview of these parameters, see [10]). In
this paper, we show that both mim-width and boolean-width are NP-hard to
compute and also that mim-width is W[1]-hard. To our knowledge, this is the
first width parameter of graphs based on non-linear decompositions that have
been shown to be W[1]-hard to compute. Both of these parameters are defined
using branch decompositions over the vertex set, and a cut-function. The cut-
function of both boolean-width and mim-width are known to be NP-hard to
compute. We give a reduction from deciding the value of these cut-functions to
the problem of deciding the boolean-width and mim-width, respectively. Our
result is a general reduction not only applicable to boolean-width and mim-
width, but to all width parameters based on branch decompositions where the
cut-function in question satisfies certain constraints. One of these constraints
being that the value of the cut function should not increase when adding a
twin vertex to the graph.

Our reduction preserves the parameter to within a constant factor of the
original decision problem, so many parameterized hardness results will also
translate to parameterized hardness of the width parameter in question. For
instance we get W[1]-hardness of computing mim-width, and no polynomial
time constant factor approximation for mim-width (unless NP = ZPP), be-
cause of similar hardness results for computing the mim-width of any partic-
ular cut.

Our main result is the following theorem, which follows from Lemma 3.1
and 3.2 described later. Using this theorem, we are able to show hardness
results of computing f -width for any cut-function f from a large class of
functions we name C-satisfying cut-functions, as long as computing f on a
single cut is hard. The graph Gk(A) is a specific graph we can construct in
polynomial time and is described in detail later.

Theorem 1.1 Given a graph G, a subset A ⊆ V (G), a C-satisfying cut func-
tion f and a non-negative number k ∈ R, the graph G⌊k⌋+1(A) has f -width at
most k + ⌊k⌋+ 1 if and only if fG(A) is at most k.

So given a graph G and subset A ⊆ V (G), answering the question ”is
fG(A) ≤ k?” can be done by instead answering the question ”for t = ⌊k⌋+ 1,
does Gt(A) have f -width at most k + t?”

Using Theorem 1.1 in combination with known NP-hardness results for
counting the number of Maximal Independent Sets in a bipartite graphG[A,A]
(equivalent to counting 2bool(A), by Rabinovich et al. [8]) and deciding the size
of a maximum induced matching in a bipartite graph G[A,A] (equivalent to
computing mim(A)), by Provan and Ball [7] and Cameron [2], respectively,
we get the following corollary.

Corollary 1.2 Both deciding the mim-width of a graph, and deciding the
boolean-width of a graph is NP-hard.

By Moser and Sikdar [5] showing that finding a maximum induced match-
ing in a bipartite graph is W[1]-hard.

Corollary 1.3 Deciding the mim-width of a graph is W[1]-hard.

By Elbassioni et al. [3], deciding the size of a maximum induced match-
ing in a bipartite graph is not in APX unless NP=ZPP, which gives us the
following corollary.

Corollary 1.4 There is no polynomial time algorithm for approximating the
mim-width of a graph to within a constant factor of the optimal, unless NP =
ZPP.

2 Preliminaries and terminology

For a graph G and vertex v, we denote its set of neighbours as NG(v), and
denote by NG[v] the set NG(v) ∪ {v}. For a set S ⊆ V (G), we denote by
NG[S] and NG(S) the sets

⋃

s∈S NG[s] and NG[S] \ S, respectively. For a
subset S ⊆ V (G), the graph G[S] is an induced subgraph G, with vertex set
S and edge set {uv ∈ E(G) : u, v ∈ S}. For disjoint subsets S1, S2 ⊆ V (G),
by G[S1, S2] we denote the induced bipartite subgraph of G with vertex set
S1 ∪ S2 and edge set {uv ∈ E(G) : u ∈ S1, v ∈ S2}. Two vertices u, v ∈ V (G)
are said to be twins in G if NG(v) = NG(u), and u is a twin vertex of v.

For a grid graph G, we denote by Ci and Ri its i-th column and row,
respectively. A subdivided grid graph is a graph resulting from replacing each
edge uv in a grid by a vertex vuv with neighbourhood NG(vuv) = {u, v}. In this
paper, we refer to the vertices added by this operation as sub-vertices. The
non sub-vertices we refer to as cell-vertices. For a subdivided grid, we denote

by Ci and Ri the same set of vertices as Ci and Ri denote in the original grid
graph (i.e., cell-vertices). For a set of cell-vertices X, we denote by sub(X)
the set of sub-vertices adjacent to exactly two vertices of X. For two sets
X1, X2 of cell-vertices, we denote by sub(X1, X2) the set of sub-vertices with
one neighbour in X1 and one neighbour in X2.

Given a graphG, a cut function is a function fG of the form fG : 2V (G) → R.
The value fG(A) is the f -value of A with respect to G. For disjoint sets
A,B ⊆ V (G), we might write fG(A,B) to mean fG[A∪B](A). If there is no
ambiguity, we omit the subscript. A cut is a bipartition (A,B) of V (G). We
might abuse notation slightly and refer to a cut simply by a set A ⊆ V (G).
In that case we mean the cut (A, V (G) \ A).

A branch decomposition over the vertices of a graph is a pair (T, δ) where
T is a sub-cubic (maximum degree three) tree and δ is a bijection from the
leaves of T to the vertices in V (G). Each edge e = uv in T can be seen to
separate T into two subtrees Tu and Tv by the operation T − e. We say that
an edge e = uv in T induces a cut of V (G); namely the bipartition with one
part consisting of all the vertices of V (G) mapped (by σ) from the leaves of
Tu and one part consisting of the vertices mapped from the leaves of Tv. So a
decomposition (T, δ) induces |E(T)| cuts.

The f -width of a branch decomposition D = (T, δ) (denoted f(D)) is
the maximum f -value over all the cuts induced by edges in E(T). The f -
width of a graph G (denoted f(G)) is the minimum f -width over all branch
decompositions of V (G).

The width-parameter Boolean-width, is an f -width where f is defined by
f = bool, where

boolG(A) = log2

(

number of inclusion-wise maximal independent
sets in G[A,A]

)

.

The width-parameter mim-width (Minimum Induced Matching-width), is
an f -width where f is defined by f = mim, where

mimG(A) = size of a maximum induced matching in G[A,A].

An induced matching is in induced subgraph of only degree one vertices. If
there is no ambiguity, we might omit subscripts.

3 Deciding cut value through graph width

In this section we will show that we can reduce the problem of deciding the
value of a cut-function f on a cut to the problem of deciding the f -width of
a graph.

The idea of how to achieve such a reduction is that we construct, based on
the input graph G and cut (A,B), a new graph consisting of a subdivided grid
of known f -width, and attach copies of A to the left-hand side of the grid,
and copies of B to the right-hand side of the grid. The grid will enforce the
existence of a cut separating A from B in any optimal decomposition, making
us able to deduce the value of fG(A,B).

In order to enforce a cut such as mentioned above, we cannot allow all
kinds of cut-functions. In fact, we need our cut-functions to satisfy the fol-
lowing constraints in order to work. However, these constraints are upheld by
cut functions of many known width-parameters defined through branch de-
compositions. If a cut function satisfies the below constraints C, we say that
it is a C-satisfying cut-function. The constraints C are as follows, and must
hold for any graph G and any set S ⊆ V (G):

(i) fG(S) = fG(S) and fG(S) depends only on the unlabeled graph G[S, S].

(ii) fG(S) is zero if G[S, S] has no edges and at least one otherwise.

(iii) Removing a vertex x ∈ S from G does not increase fG(S), and reduces
fG(S) by at most one.

(iv) If G[S, S] is the disjoint union of G1 = G[A1, B1] and G2 = G[A2, B2],
then fG(S) = fG1

(A1) + fG2
(A2).

(v) If v ∈ S has a twin vertex in G[S, S], then fG(S) = fG−v(S).

On most known width parameters defined using branch decompositions over
V (G), all but the last constraint is upheld, as they are natural properties that
come as a result of wanting to measure how many objects of a certain kind lies
between the two parts of a cut. The last constraint is the only real limitation
of the cut-parameters we investigate.

As a result of the four first constraints, any C-satisfying cut function f

on A ⊆ V (G) will always have value at least as large as a maximum induced
matching M in G[A,A] (i.e. f(A) ≥ mim(A)), since removing all vertices
other than those in M does not decrease the f -value, and we then have |M |
disjoint graphs of at least one edge, implying an f -value of at least |M |.

Some examples of cut functions that are C-satisfying are the cut functions

of the width-parameters mim-width, boolean-width, and rank-width.

To prove Theorem 1.1 we show that given a graph G, a cut A and non-
negative integer k, we can in polynomial time construct a graph Gk(A) for
which the f -width of Gk(A) is no more than k + fG(A) and no less than
min{2k, k + fG(A)}. This upper and lower bound is proved by Lemma 3.1
and Lemma 3.2, respectively. However, first we must define our graph Gk(A).

The graph Gk(A).

Given a graph G, a cut (A,B = A) of G and an integer k, we construct
Gk(A) as follows. We first start with a subdivided gridG′ of height k and width
6k. Then, for each vertex a ∈ A, we add to Gk(A) a set Sa of k vertices, and let
SA =

⋃

a∈A Sa. Similarly, for each vertex b ∈ B, we add to Gk(A) a k-vertex
set Sb and let SB denote the union

⋃

b∈B Sb. Then, for each a ∈ A we add edges
making up a matching between the vertices of Sa and the set C1 of G

′ and for
each b ∈ B a matching between Sb and C6k. Now we add edges between the
vertices of SA and SB in such a manner that the induced subgraph on SA∪SB

will be the graph G[A,B] with the addition that each vertex has k − 1 extra
twins. That is, we add the edges E ′ = {uv : u ∈ Sa, v ∈ Sb, a ∈ A, b ∈ B}.
So, the vertices of Gk(A) are V (Gk(A)) = V (G′) ∪ SA ∪ SB and the edges are
E(G′) ∪ E ′ plus a matching from Sa to C1 for each a ∈ A, and a matching
from Sb to C6k for each b ∈ B.

. . .

Fig. 1. The graph G4(A) for some set A ⊂ V (G) so that |A| = |A| = 5. Edges
between SA and S

A
are omitted in this figure.

We now show the first part of proving Theorem 1.1, namely upper bounding
the f -width of Gk(A).

Lemma 3.1 Given a graph G and subset A ⊆ V (G), the f -width of Gk(A)
for a C-satisfying cut function f is at most fG(A) + k, for any non-negative
integer k.

Proof (Sketch) We prove this lemma by construction. The idea is to decom-
pose Gk(A) from left to right, starting in SA, going through the subdivided
grid column by column, and ending in S

A
, as shown in Figure 2. For each cut

of the decomposition, we can show that removing at most k vertices leaves a

C1
sub(C1)

sub(C1, C2)

C2
sub(C2)

sub(C6k−1, C6k)

C6k sub(C6k)

SA S
A

. . .

Fig. 2. A high-level view of the decomposition of width at most fG(A)+k described
in Lemma 3.1.

cut of width fG(A), which by the constraints of C means the entire decompo-
sition has width at most fG(A) + k. ✷

We now do the last part for proving Theorem 1.1, namely giving a lower
bound on the f -width of Gk(A).

Lemma 3.2 Given a graph G, a non-negative integer k and subset A ⊆ V (G),
for any C-satisfying cut function f we have f(Gk(A)) ≥ min{2k, fG(A) + k}.

Proof (Sketch/idea) Let G′ = Gk(A). We show that in any decomposition
of f -width less than 2k, there must be a cut (X1, X2) so that two columns
are entirely contained in X1, and two columns are entirely contained in X2.
Removing vertices between the two leftmost columns and the two rightmost
columns out of these four columns, we disconnect the partsQ1 andQ2 depicted
in figure 3. We show that the cut (X1, X2) restricted only to the vertices of Q1

will have width at least k. We further show that the graph G′[X1∩Q2, X2∩Q2]
contains as an induced subgraph a graph isomorphic to G[A,A], implying
f(X1, X2) restricted to Q2 is at least fG(A), and thus f(X1, X2) ≥ k+fG(A).✷

}Q1 }Q2}Q2

Fig. 3. The four columns (marked in grey) mentioned in the proof sketch of
Lemma 3.2 act as a separator between the parts Q1 and Q2 depicted. (Again,
edges from SA to S

A
are omitted from the drawing.)

This completes the part of proving Theorem 1.1, as we now have a strict
(enough) bound on the f -width of Gk(A) to be able to tie its value to the

value of fG(A).

References

[1] Arnborg, S., D. G. Corneil and A. Proskurowski, Complexity of finding
embeddings in ak-tree, SIAM Journal on Algebraic Discrete Methods 8 (1987),
pp. 277–284.

[2] Cameron, K., Induced matchings, Discrete Applied Mathematics 24 (1989),
pp. 97–102.

[3] Elbassioni, K. M., R. Raman, S. Ray and R. Sitters, On the approximability
of the maximum feasible subsystem problem with 0/1-coefficients., in: SODA,
SIAM, 2009, pp. 1210–1219.

[4] Fellows, M. R., F. A. Rosamond, U. Rotics and S. Szeider, Clique-width is np-
complete, SIAM Journal on Discrete Mathematics 23 (2009), pp. 909–939.

[5] Moser, H. and S. Sikdar, The parameterized complexity of the induced matching
problem, Discrete Applied Mathematics 157 (2009), pp. 715–727.

[6] Oum, S.-I., Approximating rank-width and clique-width quickly, TALG 5 (2008),
p. 10.

[7] Provan, J. S. and M. O. Ball, The complexity of counting cuts and of computing
the probability that a graph is connected, SIAM Journal on Computing 12

(1983), pp. 777–788.

[8] Rabinovich, Y., J. A. Telle and M. Vatshelle, Upper bounds on boolean-width
with applications to exact algorithms, in: Parameterized and Exact Computation,
Springer, 2013 pp. 308–320.

[9] Seymour, P. D. and R. Thomas, Call routing and the ratcatcher, Combinatorica
14 (1994), pp. 217–241.

[10] Vatshelle, M., “New width parameters of graphs,” Ph.D. thesis, The University
of Bergen (2012).

	Introduction
	Preliminaries and terminology
	Deciding cut value through graph width
	References

