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Abstract

Let G be an n-vertex graph that contains linearly many cherries (i.e., paths on 3
vertices), and let c be a coloring of the edges of the complete graph Kn such that
at each vertex every color appears only constantly many times. In 1979, Shearer
conjectured that such a coloring c must contain a properly colored copy of G. We
prove this conjecture even for graphs G with O(n4/3) cherries and show that this is
up to a constant factor best possible. We also prove an analogue of this conjecture
for colorings of E(Kn) where for each color the total number of appearances is
bounded, and then the aim is to find a rainbow copy of G.

Our proofs combine a framework of Lu and Székely for using lopsided Lovász
local lemma in the space of random injections together with some other ideas.
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1 Introduction

The canonical version of Ramsey theorem [8] for graphs implies that for every
graph G, there exists an integer n such that any coloring of the edges of the
complete graph Kn contains at least one of the following copies of G:

• monochromatic copy, i.e., a copy where all the edges have the same color,

• rainbow copy, which is a copy where no two edges have the same color, or

• lexicographic copy, in which case the vertices of the copy can be ordered in
such a way that the color of any edge is purely determined by the smaller
endpoint.

Note that by restricting the number of colors that the coloring of E(Kn)
can use, the copy must be monochromatic which proves the classical Ramsey
theorem.

In this work, we consider the following two different types of restrictions,
which are kind of dual to bounding the number of colors: we do not allow any
color to, either locally or globally, appear too many times. More precisely,
we say that a coloring c of E(Kn) is locally k-bounded if for every vertex
v ∈ V (Kn), no color appears more than k-times on the (n− 1) edges incident
to v. Analogously, we say that c is globally k-bounded if no color appears more
than k-times on all the

(

n
2

)

edges of Kn.

The copies ofG we want to find in such colorings are either properly colored
or rainbow. We define that a coloring c of E(Kn) is G-proper, if there exists
a copy of G in Kn for which c induces its proper edge-coloring. Similarly, we
say that c is G-rainbow if there exists a copy of G in Kn such that no two
edges of this copy have the same color in c.

1.1 Locally bounded colorings and properly colored subgraphs

A conjecture of Bollobás and Erdős [5] from 1976 states that every locally
(n/2)-bounded coloring of E(Kn) is Cn-proper, i.e., it contains a properly
colored Hamilton cycle. In [5], they proved a weaker result – any locally cn-
bounded coloring is Cn-proper, where the constant c is equal to 1/69. Around
the same time, Chen and Daykin [7] proved the same result for c = 1/17, and
then in 1979, Shearer [17] improved the value of c to 1/7. After another im-
provement due to Alon and Gutin [3], Lo [14] proved that cn-locally bounded
coloring is Cn-proper for any c < 1/2 and n sufficiently large.

In [17], Shearer proposed the following generalization of the conjecture to
an arbitrary graph G that do not contain too many cherries, i.e., paths on



three vertices.

Conjecture 1.1 (Shearer [17]) For every two integers s and k, there exists

an integer n0 such that the following is true. If n ≥ n0 and G is an n-vertex
graph with at most sn cherries, then any locally k-bounded coloring of E(Kn)
is G-proper.

Our main result is that we prove this conjecture. Actually we prove an
even stronger statement, where we allow the graphs G to have up to Θ(n4/3)
cherries.

Theorem 1.2 If G is an n-vertex graph with at most r cherries, then any

locally
(

n
560r3/4

)

-bounded coloring c of E(Kn) is G-proper.

On the other hand, there are locally 3-bounded colorings cn of E(Kn)
together with n-vertex trees Tn with Θ(n4/3) cherries so that cn is not Tn-
proper.

Another generalization of the conjecture of Bollobás and Erdős to a general
graph G takes into account the maximum degree. Alon, Jiang, Miller and
Pritikin [4] showed that if G is an n-vertex graph with maximum degree ∆ and

k = O
( √

n

∆27/2

)

, then any locally k-bounded coloring c of E(Kn) is G-proper.

Their result was then improved by Böttcher, Kohayakawa and Procacci [6]
who showed that k can be of order n/∆2.

Theorem 1.3 ([6]) If G is an n-vertex graph with maximum degree ∆, then

any locally (n/22.4∆2)-bounded coloring c of E(Kn) is G-proper.

Our next contribution is that we show, up to a constant factor, tightness of
this result for all values n and ∆. Even more, we can find graphs G with max-
imum degree ∆ and locally (3.9n/∆2)-bounded but not G-proper colorings,
where the number of vertices of G does not depend on n at all.

Proposition 1.4 For every prime power q and integer n, there exist an ℓ-
vertex graph G with maximum degree ∆, where ℓ = q2 + q + 1 and ∆ = q+ 1,
and a locally (3.9n/∆2)-bounded coloring c of E(Kn) so that c is not G-proper.

1.2 Globally bounded colorings and rainbow subgraphs

There is a rich literature studying rainbow copies of a fixed graph in globally
bounded colorings of E(Kn), see for example [2,10,12,13]. In this work, we
will focus on finding rainbow spanning subgraphs.

Various authors have considered an analogue of Bollobás-Erdős conjecture,
where the aim is to find a rainbow Hamilton cycle in a globally bounded



coloring of E(Kn). Specifically, Hahn and Thomassen [11] conjectured that
there is a constant c > 0 such that any globally cn-bounded coloring of Kn is
Cn-rainbow. Their conjecture was proven by Albert, Frieze, and Reed [1] with
c = 1/64 (see also [16] for a correction of the originally claimed constant).

In 2008, Frieze and Krivelevich [9] showed that there is some absolute
constant c > 0 so that any globally cn-bounded coloring actually contain
copies of Ck for all k ∈ {3, . . . , n}. In the same paper, they conjectured that
there is also a constant c > 0 such that every globally cn-bounded coloring
contains any spanning tree with bounded maximum degree. Using the same
technique as for proving Theorem 1.3, Böttcher, Kohayakawa and Procacci [6]
proved the conjecture of Frieze and Krivelevich not only for trees, but actually
for all spanning subgraphs with bounded maximum degree.

Theorem 1.5 ([6]) If G is an n-vertex graph with maximum degree ∆, then

any globally (n/51∆2)-bounded coloring c of E(Kn) is G-rainbow.

With a slight modification of the construction from Proposition 1.4, we
can show that the dependency k = O(n/∆2) in Theorem 1.5 is again best
possible.

Proposition 1.6 For every two integers ∆ and n such that ∆ is even and
(

∆
2
+ 1

)2
divides n, there exist an n-vertex graph G with maximum degree

∆ and a globally (16n/∆2)-bounded coloring c of E(Kn) so that c is not G-

rainbow.

Finally, we have found natural to ask what can we say about globally
bounded colorings and rainbow copies of graphs that does not have bounded
maximum degree, but contains only few cherries. We were able to obtain the
following theorem, which is the analogue of Conjecture 1.1 in this setting.

Theorem 1.7 If G is an n-vertex graph with at most r cherries, then any

globally
(

n
1512r3/4

)

-bounded coloring c of E(Kn) is G-rainbow.

Since the locally 3-bounded coloring c of E(Kn) which shows the tightness
of Theorem 1.2 is also globally 9-bounded, we conclude that again the number
of cherries cannot exceed Θ(n4/3).

2 Sketch of the proof of Theorem 1.2

The main idea of Böttcher, Kohayakawa and Procacci [6] for proving Theo-
rems 1.3 and 1.5 was to embed G randomly into Kn and then use local lemma
through a framework of Lu and Székely [15]. In order to bound the negatively



correlated dependencies for the lopsided version of local lemma, they needed
the maximum degree of G to be of order O(

√
n).

One of the new ingredients for our theorem is to first perform some pre-
processing that deals with the vertices of G that has degree larger than

√
n,

and then we embed the rest randomly. Since the number of cherries of G
is bounded by O(n4/3), there can be only a small number of vertices of de-
gree Ω(

√
n). On the other hand, there is always a large enough subgraph

H ⊆ Kn, so that the large-degree vertices of G fit there and have only a few
monochromatic cherries in c with both leaves in V (H).

Lemma 2.1 For every n, k and r such that r = O(n4/3) and k = O(n/r3/4),
the following is true. Every locally k-bounded coloring c of Kn contains a prop-

erly colored complete subgraph H of size r1/4 such that for every two vertices

v1, v3 ∈ V (H), the set {v2 ∈ V (Kn) : c(v1v2) = c(v2v3)} has size O(kr1/4).

Let L be the first r1/4 vertices of G according to their degrees and let
S := V (G)\L. It holds that maximum degree of G[S] is O(

√
n). We map L to

V (H) arbitrarily and S to Q uniformly at random, where Q := V (Kn)\V (H).
Since c restricted to V (H) is a proper coloring of H , there are five types of
monochromatic cherries we need to worry about:

L S L S L S L S L S

In order to show that with positive probability none of the cherries of G
is monochromatic, we use lopsided local lemma with a negative dependency
graph D from the framework of Lu and Székely [15].

Before describing the graph D in details, let us introduce some additional
notation. Let Ω be the probability space of random bijections π between S and
Q. An event B is called canonical if there exist two sets X ⊆ S, Y ⊆ Q and a
bijection τ : X → Y such that B = {π : π(a) = τ(a) for all a ∈ X}. For two
sets X ⊆ S and Y ⊆ Q of the same size and a bijection τ : X → Y , we denote
the corresponding canonical event by Ω(X, Y, τ). We say that two canonical
events Ω(X1, Y1, τ1) and Ω(X2, Y2, τ2) intersect if X1 and X2 intersect or Y1

and Y2 intersect.

Theorem 2.2 ([15]) Let B = {B1, . . . , BN} be a set of canonical events and

D a graph with the vertex set [N ] where ij ∈ E(D) if and only if the events



Bi and Bj intersect. It holds that D is a negative dependency graph.

Using this D and analysing how the five types of cherries can intersect
with each other, we conclude that with a positive probability the copy of G
we constructed is properly edge-colored.

2.1 Locally 3-bounded coloring which is not Tn-proper

Finally, we describe the construction of cn and Tn which shows that we cannot
go over O(n4/3) cherries. Let Tn be an n-vertex tree of radius two with exactly
one vertex z of degree Θ(n2/3) that has all the neighbors of degree Θ(n1/3)
and they have all their other neighbors of degree one. Note that Tn contains
Θ(n4/3) cherries.

On the other hand, split arbitrarily the vertex-set V (Kn) into n disjoint
parts P1, . . . , Pn, each of size 3. The coloring c uses a palette of colors [n]∪

(

[n]
2

)

and two vertices v1 ∈ Pi and v2 ∈ Pj are colored with the color {i, j}. Note
that if i = j, the edge v1v2 is colored with the color {i}. It follows that c is
locally 3-bounded.

Suppose there is a properly edge-colored copy of T3n and let Pz be the
part where the vertex z is mapped. If the two other vertices v1 and v2 in Pz

are both neighbors of z in T3n, then the vertices of Pz span a monochromatic
cherry and the copy is not properly edge-colored. So one of the vertices, say
v1, must be a leaf of T3n. However, then there is no part Pj where we can
embed the common neighbor of z and v1, a contradiction.
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