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Abstract

Chen et al. proved that every 18-tough chordal graph has a hamiltonian cycle.
Improving upon their bound, we show that every 10-tough chordal graph is hamil-
tonian. We use Aharoni and Haxell’s hypergraph extension of Hall’s Theorem as
our main tool.
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1 Introduction

We study hamiltonian cycles and toughness in chordal graphs. Recall that
following Chvátal [6], the toughness of a graph G is the minimum, taken over
all separating sets S of vertices of G, of the ratio of |S| to the number of
components of G \ S. If G is complete, its toughness is defined to be ∞. We
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say that a graph is t-tough if its toughness is at least t. It is easy to observe
that hamiltonian graphs are 1-tough. In the reverse direction, Chvátal [6]
conjectured the following.

Conjecture 1.1 There exists t0 such that every t0-tough graph is hamilto-
nian.

Conjecture 1.1 is still open. The best available lower bound is due to
Bauer, Broersma and Veldman [3] who constructed non-hamiltonian graphs
with toughness arbitrarily close to 9

4
.

Partial results related to Chvátal’s conjecture have been obtained in var-
ious restricted classes of graphs (see the survey [2] for details). A number
of these results concern chordal graphs. For instance, it is known that every
chordal planar graph of toughness more than 1 is hamiltonian [4], and so is
every 1-tough interval graph [8] or every 3

2
-tough split graph [9]. All of these

results are tight.

For chordal graphs in general, there are non-hamiltonian examples with
toughness arbitrarily close to 7

4
, found in [3]. On the other hand, Chen et

al. [5] showed that every 18-tough chordal graph is hamiltonian. In this paper,
we improve the bound as follows:

Theorem 1.2 Every 10-tough chordal graph is hamiltonian.

Our main tool is a hypergraph extension of Hall’s Theorem, due to Aharoni
and Haxell [1].

2 Overspan graphs

Let G be a chordal graph. By a well-known theorem of Gavril [7], there exists
a tree representation of G — that is, a tree T0 and a family F of subtrees of
T0 such that G is isomorphic to the intersection graph of F . We may assume
that for each leaf of T0, F contains a subtree consisting of the leaf as its only
vertex. For each vertex v of G, let Fv denote the corresponding subtree in F .

Let us fix the tree representation and modify T0 to a tree T which we call
the base tree for G. First, we fix an independent set I in G that is maximal
with the property that for each v ∈ I, Fv is a path all of whose vertices have
degree at most 2 in T0. We choose I such that no member of I contains a
subtree from F as a proper subgraph. Any path Fv with v ∈ I is called an
I-path; it is trivial if is consists of a single vertex. Let us colour all the edges
of all I-paths red and colour the other edges of T0 black.

Next, we suppress each degree 2 vertex of T0 that is not an endvertex of any



I-path, one by one. The resulting tree T (the base tree for G) inherits a natural
red-black colouring. Observe that any nontrivial I-path in T0 corresponds to
a red edge, the red edges form a matching and their endvertices are all of
degree 2. Vertices of T0 that exist also in T (that is, vertices of degree at
least 3 and endvertices of I-paths) are called substantial.

We use T to construct a family of so-called overspan graphs, assigning one
such graph Ae to each edge e of T . The vertex set of Ae is V (G) \ I. The
graph may contain loops; to avoid ambiguity, we point out that we view a
loop as an edge of a special type. Let r and s denote the endvertices of e, the
edge set of Ae is defined as follows:

• there is a loop on a vertex u if Fu contains the vertices r and s in T0,

• vertices u and v are joined by an edge if r ∈ V (Fu) and s ∈ V (Fv) (or vice
versa), and uv is an edge of G.

Furthermore, for each black edge e of T we introduce an additional overspan
graph A′

e which is a copy of Ae.

The reason for the name ‘overspan graph’ is that we view each edge of T as
representing a gap that needs to be crossed by the sought hamiltonian cycle,
and the edges of the associated overspan graph encode the ways to do so.

As the tree representation (T0,F) and the independent set I are fixed, let
us use the notation A(G) for the family of overspan graphs for G.

For B ⊆ A(G), we define a graph GB on vertex set V (G) \ I, whose edge
set is the union of the edge sets of all the graphs contained in B; each edge is
only included at most once in this union. For B = A(G), we let the graph be
denoted by GA.

We conclude this section by pointing out a connection between the family
of overspan graphs and the hamiltonicity of G.

Lemma 2.1 Let G be a chordal graph and A(G) the family of overspan graphs
for G (with respect to a tree representation for G and a suitable independent
set I). Assume that we can choose one edge from each graph in A(G) in such
a way that the chosen edges form a matching (possibly including loops) in GA.
Then G is hamiltonian.

3 Hall’s theorem for hypergraphs

In this section, we recall an extension of Hall’s Theorem to hypergraphs due
to Aharoni and Haxell [1]. We use this result as a tool to verify the condition
in Lemma 2.1.



LetA = {H1, H2, . . . , Hm} be a family of hypergraphs. A system of disjoint
representatives for A is a function f : A → ⋃m

i=1 Hi such that for all distinct
i, j ∈ {1, . . . ,m}, f(Hi) is a hyperedge of Hi and f(Hi) ∩ f(Hj) = ∅.

Recall that a matching in a hypergraph is a collection of pairwise dis-
joint hyperedges, and the matching number ν(H) of H is the size of a largest
matching in H. A corollary of the main result of [1] is the following theorem.

Theorem 3.1 Let A be a family of n-uniform hypergraphs. A sufficient con-
dition for the existence of a system of disjoint representatives for A is that for
every B ⊆ A, there exists a matching in

⋃B of size greater than n(|B| − 1).

The nontrivial direction of Hall’s Theorem for graphs follows directly from
the n = 1 case of Theorem 3.1. In our argument, we require the next case,
n = 2, where the members of A are graphs. Indeed, we need to apply The-
orem 3.1 to the family of overspan graphs A(G), which we regard as hyper-
graphs with hyperedges of size 1 (loops) and 2 (non-loops). Although the
latter hypergraphs need not be uniform, it is not hard to reduce the problem
to the uniform case.

Theorem 3.1 together with Lemma 2.1 imply the following sufficient con-
dition for the hamiltonicity of G:

Lemma 3.2 Let G be a chordal graph. If for every B ⊆ A(G), the matching
number of GB is at least 2 |B| − 1, then G is hamiltonian.

4 Vertex covers of the overspan graphs and toughness

We sketch the proof of Theorem 1.2. Suppose that a 10-tough chordal graph G
is not hamiltonian. By Lemma 3.2, ν(GB) ≤ 2(|B|−1) for some B ⊆ A(G). We
consider the vertex cover number of GB. Recall that this parameter (denoted
by τ) is the minimum size of a set of vertices intersecting each edge of the given
graph. By the classical theorem of König, ν(H) = τ(H) for any bipartite graph
H. Although GB need not be bipartite, it can be shown to become bipartite
after the removal of all vertices with loops; in fact, this implies that the same
equality holds for GB:

Lemma 4.1 The graph GB satisfies ν(GB) = τ(GB).

There is a crucial connection between the vertex cover numbers of unions
of the overspan graphs and the toughness of G. Let C be a minimum vertex
cover of GB; by Lemma 4.1, |C| ≤ 2(|B| − 1). For technical reasons, we need
to fix C and extend B to a maximal subfamily such that C is a vertex cover



of GB. We will produce a separating set S ⊆ V (G) demonstrating that G is
not 10-tough; to find it, we augment C as follows.

Let B be the set of edges e of T such that B contains Ae. Let E ′ be the
set of all red edges of B such that none of the adjacent (black) edges of T is
contained in B. Any red edge e corresponds to an I-path, say Fve ; let X

′ be
the set of all vertices ve of G such that e ∈ E ′. We set S = C ∪X ′ and show
that it has the required properties.

Let E∗ be the set of black edges contained in B. For i ∈ {0, 1, 2}, let
Ei ⊆ E∗ consist of edges incident with exactly i vertices whose degree in T is
at most 2. It is not hard to show that

|S| < 4 |E0|+ 6 |E1|+ 8 |E2|+ 3 |E ′| . (1)

Bounding the number of components of G \S is somewhat harder. Let us say
that a vertex v ∈ V (G) is based at a component L of T \ (E∗ ∪ E ′) if L is
the unique component containing a substantial vertex of Fv. An important
observation is that each vertex of G \ S is based at some component of T \
(E∗ ∪ E ′), and adjacent vertices are based at the same component. We call a
component K of T \ (E∗ ∪E ′) real if there is a vertex v of G \ S based at K.

Using a discharging type argument, we bound the number of real compo-
nents of T \ (E∗ ∪ E ′) from below; the bound implies that

c(G \ S) > 2

5
|E0|+ 3

5
|E1|+ |E2|+ |E ′| . (2)

The details are technical and we omit them due to space restrictions. Com-
paring (1) and (2), we find that G is not 10-tough, a contradiction proving
Theorem 1.2.

In conclusion, we remark that the bound of Theorem 1.2 is still far from
the lower bound of ‘almost’ 7

4
proved in [3], and there seems to be ample room

for further improvements.
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