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Abstract

Let α, σ > 0 and let A and S be subsets of a finite abelian group G of densities α
and σ, respectively, both independent of |G|. Without any additional restrictions,
the set A need not contain a 3-term arithmetic progression whose common gap lies
in S. What is then the weakest pseudorandomness assumption that if put on S
would imply that A contains such a pattern?

More precisely, what is the least integer k ≥ 2 for which there exists an η = η(α, σ)
such that ‖S − σ‖Uk(G) ≤ η implies that A contains a non-trivial 3-term arithmetic
progression with a common gap in S? Here, ‖·‖Uk(G) denotes the kth Gowers norm.

For G = Zn we observe that k must be at least 3. However for G = F
n
p we show

that k = 2 is sufficient, where here p is an odd prime and n is sufficiently large.
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1 Introduction

Given a set A ⊆ [n] = {1, . . . , n} with positive density (dense, hereafter),
an additional set S ⊆ [n], and an integer k ≥ 2 we may enquire whether
A contains a k-term arithmetic progression (kAP, hereafter) whose common
gap lies in S (kSAP, hereafter). The celebrated Szemerédi’s Theorem [13]
addresses the case S = [n]. Using ergodic methods Bergleson and Leibman [1]
proved a far reaching generalisation of Szemerédi’s Theorem which has come
to be known as the polynomial Szemerédi’s Theorem where the following set
S is considered.

Theorem 1.1 (Polynomial Szemerédi’s Theorem [1])
For every α > 0 there exists an N0 such that for all N ≥ N0 the following
holds. Let A ⊆ [n] have density α and let P1, . . . , Pk be polynomials with
integer coefficients all vanishing at zero. Then there exists a d �= 0 such that
A contains the configuration x+ P1(d), . . . , x+ Pk(d).

Currently the sole known proof of Theorem 1.1 is the ergodic proof of
Bergelson and Leibman. Hence, the qualitative formulation of this result.
Without using ergodic methods Green [8] established the following.

Theorem 1.2 (Green [8]) There exists a constant c such that any subset of
[n] of density at least (log log n)−c contains the configuration {x, x+d21+d22, x+
2d21 + 2d22} for some integers d1 and d2 not both zero.

To date this result of Green is the sole known non-ergodic proof in the direction
of Theorem 1.1.

More recently using ergodic methods, Christ [2] and separately of him
Frantzikinakis and Lesigne [3,4], considered the emergence of 3SAPs with S
being a random set. Roughly speaking, they establish the following. Let
A ⊆ [n] be dense (n sufficiently large) and let S ⊆ [n] be random and of
density � n−1/2. Then, with high probability, A contains a 3SAP.

In this paper, without using ergodic methods, we consider the emergence
of 3SAPs in a dense set A in the case that S is dense and pseudorandom to
some extent. Requiring that S is dense is clearly insufficient on its own 3 .
Moreover, requiring that S forms a relatively dense subset 4 of a random set
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3n].

4 We say that a set X is a relatively dense subset of a set Y if there exists a δ > 0
independent of |Y | such that |X| ≥ δ|Y |.



is insufficient as well 5 . In the infinite setting of this problem (i.e., A, S ⊆ Z ),
already for the emergence of 2SAPs in A having S ∩ qZ �= ∅, for every q ∈ Z,
is a necessary condition.

This together with the observation that the set of allowed gaps S in Theo-
rem 1.2 is dense in [n] (see, e.g., [14, Corollary 4.15] and comments thereafter)
suggest that considering the emergence of 3SAPs in a dense set A with S being
dense and adequately pseudorandom is a natural venue for this problem. Our
interest is in quantifying the phrase adequately pseudorandom.

Problem 1.3 Let α, σ > 0 and let A and S be subsets of a finite abelian group
G of densities α and σ, respectively, both independent of |G|. What is the least
integer k ≥ 2 for which there exists an η = η(α, σ) such that ‖S − σ‖Uk ≤ η
implies that A contains a non-trivial 3SAP?

Here, ‖ · ‖Uk denotes the kth Gowers norm [14]. Using the kth Gowers norm
of the balanced function of S, i.e., S − ‖S‖L1(G), in order to quantify the
pseudorandomness of S follows the traditional definition of pseudorandom
sets [14].

With the exception that the characteristic function of a set X is denoted
X(·), our notation is that of [14]. Throughout, we write x = y ± d to denote
that x ∈ [y − d, y + d].

Prior to stating our main result, let us consider Problem 1.3 for sets taken
in the group Zn. First, let us consider a simpler problem. Given two sets
A and S in Zn how dense can A be if it contains no 2SAPs? Here a 2SAP
consists of two points x, y ∈ A such that x − y ∈ S. This is a generalisation
of the well-known Fürstenberg-Sárközy Theorem [5,12] in which S = Zn is
taken.

Applying the so called Hoffman bound [11] over the size of the largest
independent set in a graph to the undirected Cayley graph generated by S
leads to the following result; proof of which we omit.

Proposition 1.4 Let n be a positive integer, let S ⊆ Zn be symmetric 6 , and
let A ⊆ Zn. If A contains no 2SAP, then A has density at most ‖S‖u‖S‖−1L1(Zn)

.

5 Take A to be the even numbers and S to be the intersection of the odd numbers with a
dense random set.
6 A set X ⊆ Zn is called symmetric if x ∈ X ⇐⇒ x−1 ∈ X.



Here, ‖S‖u denotes the linear bias 7 of S given by

‖S‖u = sup
ξ∈̂Zn\{̂0}

|Ŝ(ξ)| = sup
ξ∈̂Zn\{̂0}

∣∣∣Ex∈ZnS(x)ξ(x)
∣∣∣ ,

where Ŝ : Ẑn → C is the Fourier transform of S. For S = Zn Proposition 1.4 is
meaningless and consequently does not imply the Fürstenberg-Sárközy The-
orem [5,12]. However, for dense sets S satisfying ‖S‖u = o(‖S‖L1(Zn)) this
proposition is meaningful.

Let us now contrast Proposition 1.4 with the emergence of 3SAPs with
respect to two sets A and S both taken in Zn. Here the restriction over the
pseudorandomness of S must be more substantial. In particular one must pose
a restriction over the U3 norm of S −‖S‖L1(Zn), while for 2SAPs a restriction
over the U2 norm of S − ‖S‖L1(Zn) was sufficient.

To see this, fix ε < 1/10, fix an irrational number ϑ, and let n be a
sufficiently large integer. Consider the sets A = {xmodn : ‖x2ϑ‖ < ε} ⊆ Zn

and S = {dmodn : ‖2d2ϑ‖ > 1/2 − ε} ⊆ Zn, where for a real number t ∈ R

we write ‖t‖ to denote the distance of t to the integers 8 . Both A and S are
dense and pseudorandom in the sense that ‖A‖u = o(|A|) and ‖S‖u = o(|S|)
see e.g. [7, pp. 9 − 10]. Nevertheless, A contains no 3SAPs. Indeed, let us
assume, towards contradiction, that (x, x+ d, x+2d) is a 3SAP in A (so that,
d ∈ S). Then

‖ − 2(x+ d)2ϑ‖ = ‖2(x+ d)2ϑ‖ ≤ 2‖(x+ d)2ϑ‖ < 2ε.

Observe that

‖2d2ϑ‖ = ‖(x2 − 2(x+ d)2 + (x+ 2d)2)ϑ‖ < 4ε

contradicting the assumption that d ∈ S and satisfying ‖2d2ϑ‖ > 1/2− ε.

Our main result is the resolution of Problem 1.3 for sets taken in the group
F
n
p where p is an odd prime and n is sufficiently large. We state this next.

Theorem 1.5 Let p be an odd prime. For every α > 0 and σ > 0 there exist
an η > 0 a C > 0, and an integer n0 > 0 such that for every integer n ≥ n0

the following holds.

Let A and S be subsets of Fn
p of densities α and σ, respectively, such that

‖S‖u ≤ ησ. Then A contains at least C|S|pn 3SAPs.

7 The linear bias of a set S is essentially equivalent to the U2 norm of the balanced function
of S [14].
8 That is ‖t‖ = min{{t}, 1− {t}}, where {t} is the fractional part of t.



Our proof of Theorem 1.5 relies on three results that are used in con-
junction. The first is the so called arithmetic regularity lemma established
by Green and Tao [10]. For our purposes the variant of this lemma found
in [9] will be sufficient. This is presented in Section 2. The second result is a
Generalised von Neumann type lemma that fits for 3SAPs. This is presented
in Section 3. The third, is a lemma for counting 3SAPs along certain struc-
tured functions and is presented in Section 4. Finally, a sketch of our proof of
Theorem 1.5 is presented in Section 5.

2 An arithmetic regularity lemma

The aim of this section is to state Theorem 2.2 [9]. For a σ-algebra B of Fn
p

and x ∈ F
n
p , we write B(x) to denote the atom of B containing x. Given

f : Fn
p → C we write

E (f |B) (x) = EB(x)f =
1

|B(x)|
∑

y∈B(x)
f(y)

to denote the average of f over the atom of B containing x.

Let f1, . . . , fk ∈ C
Fn
p be functions of the form F

n
p → C. A σ-algebra of

F
n
p with each of its atoms of the form {x ∈ F

n
p : f1(x) = z1, . . . , fk(x) = zk},

where z1, . . . , zk ∈ C, is called a factor of Fn
p . A factor of Fn

p each of whose
atoms has the form {x ∈ F

n
p : (rT1 x, . . . , r

T
k x) = a} where r1, . . . , rk ∈ F

n
p and

a ∈ F
k
p is called a linear factor of complexity k, and we say that this linear

factor is generated by r1, . . . , rk.

Definition 2.1 Let r1, . . . , rd1 ∈ F
n
p and let M1, . . . ,Md2 be symmetric n× n

matrices over Fp. Let B1 be the linear factor generated by r1, . . . , rd1 , and let
B2 be the factor generated 9 by the quadratic forms xTM1x, . . . , x

TMd2x and
the linear forms rT1 x, . . . , r

T
d1
x. The pair (B1,B2) is called a quadratic factor

of complexity (d1, d2).

Let (B1,B2) be a quadratic factor of complexity (d1, d2). The atoms of B1

are indexed using the elements of Fd1
p . The atoms of B2 are indexed using the

9 The atoms of B2 have the form

{x ∈ F
n
p : rT1 x = c1, . . . , r

T
d1
x = cd1and xTM1x = z1, . . . , x

TMd2x = zd2},

where (r1, . . . , rd1
) ∈ F

d1
p and (z1, . . . , zd2

) ∈ F
d2
p .



elements of Fd1
p × F

d2
p . We map an x ∈ F

n
p to the pair

(Γ(x),Φ(x)) = ((rT1 x, . . . , r
T
d1
x), (xTM1x, . . . , x

TMd2x)) ∈ F
d1
p × F

d2
p ,

so that (Γ(x),Φ(x)) is the atom of the quadratic factor containing x.

We write rkM to denote the rank of a matrix M . A quadratic fac-
tor of complexity (d1, d2) satisfying rk (λ1M1 + · · ·+ λd2Md2) ≥ r for any
λ1, . . . , λd2 ∈ Fp not all zero, where M1, . . . ,Md2 are the symmetric matri-
ces involved in its generation, is said to have rank at least r.

Theorem 2.2 ([9, Proposition 3.12], [6, Theorem 3.5])
For every real δ > 0 and every two growth functions ωrk, ωuni : R+ → R+

(which may be independent of δ) there exists an n0 such that for every integer
n ≥ n0 the following holds.

For every function f : Fn
p → [−1, 1] there exists a constant d0, a quadratic

factor (B1,B2), and a decomposition f = fstr + funi + fneg satisfying the fol-
lowing terms.

(i) The complexity of (B1,B2) is at most (d1, d2) where d1, d2 ≤ d0;

(ii) the rank of (B1,B2) is at least ωrk(d1 + d2);

(iii) and

fstr = E(f |B2), ‖fneg‖L2(Fn
p )
≤ δ, and ‖funi‖U3(Fn

p )
≤ 1/ωuni(d1 + d2).

3 A generalised von Neumann type lemma

The aim of this section is to state a generalised von Neumann type lemma for
kSAPs with respect to two sets A and S taken in an arbitrary finite abelian
group G. Proof of this is omitted.

Given S ⊆ G with σ = ‖S‖L1(G) set

μS(x) = S(x) (Ex∈GS(x))
−1 = S(x)/σ,

Lemma 3.1 Let k ≥ 3 be an integer, let F = {f1, . . . , fk} be a collection of
complex valued functions over G, let S ⊆ G, and fix g ∈ F . If ‖f‖∞ ≤ 1 for
each f ∈ F \ {g}, then

| Ex∈G,d∈Gf1(x) · · ·fk(x+ (k − 1)d)μS(d) | ≤(
‖S‖2L1(G) + ‖S‖u‖S‖L1(G)

)1/2k−1

‖g‖Uk(G)‖S‖−1L1(G) (1)



4 Counting 3SAPs over atoms of quadratic factors

The aim of this section is to state Lemma 4.2 proof of which is omitted.
Roughly speaking, this lemma estimates the number of 3SAPs with respect
to a function of the form of fstr (see Section 2).

Definition 4.1 Let S ⊆ F
n
p , and let (B1,B2) be a quadratic factor of Fn

p of

complexity at most (d1, d2). A quadruple of atoms

((a(0), b(0), (a(1), b(1), (a(2), b(2), (a(3), b(3)) satisfying

(a(0), a(1), a(2), a(3)) is a 4Γ(S)AP in F
d1
p ,

and

b(0) − 3b(1) + 3b(2) − b(3) = 0

is called viable, where Γ is as in Section 2 and Γ(S) is the image of S under Γ.

Given a viable quadruple, the following lemma estimates the number of
3SAPs contained within the first three atoms of the quadruple. The need for
viable quadruples is too technical to be motivated in this short note.

Lemma 4.2 Let S ⊆ F
n
p , let (B1,B2) be a quadratic factor of Fn

p of rank at

least r and complexity at most (d1, d2), let ((a
(0), b(0), (a(1), b(1), (a(2), b(2), (a(3), b(3))

be viable, and let

X = {(x, d) ∈ F
n
p × S : x+ jd ∈ (a(j), b(j)), 0 ≤ j ≤ 2}

denote the set of 3SAPs found within the first three atoms of the quadruple.
Then,

|X| =
[
p−2d1−3d2 ±

(
‖S‖u‖S‖−1L1(Fn

p )
+ 4p−r/2

)]
pn|S|.

5 Sketch of our proof of Theorem 1.5

Given A, S, α, and σ as in Theorem 1.5 we show that

Ex,d∈Fn
p
A(x)A(x+ d)A(x+ 2d)μS(d) ≥ α4/26,

where μS(x) = S(x)‖S‖−1L1(Fn
p )
.

Roughly speaking, we apply Theorem 2.2 and obtain a decomposition A =



fstr + funi + fneg and consequently obtain

|Ex,d∈Fn
p
A(x)A(x+ d)A(x+ 2d)μS(d)| =
|Ex,d∈Fn

p
fstr(x)fstr(x+ d)fstr(x+ 2d)μS(d)|

± |Ex,d∈Fn
p
fneg(x)A(x+ d)A(x+ 2d)μS(d)|

± |Ex,d∈Fn
p
funi(x)A(x+ d)A(x+ 2d)μS(d)|

± |Ex,d∈Fn
p
fstr(x)fneg(x+ d)A(x+ 2d)μS(d)|

± |Ex,d∈Fn
p
fstr(x)funi(x+ d)A(x+ 2d)μS(d)|

± |Ex,d∈Fn
p
fstr(x)fstr(x+ d)fneg(x+ 2d)μS(d)|

± |Ex,d∈Fn
p
fstr(x)fstr(x+ d)funi(x+ 2d)μS(d)|.

The terms involving fneg are bounded using the assumption that ‖fneg‖L2(Fn
p )

is small (see Theorem 2.2). The terms involving funi are bounded using (1)
and the assumption that funi is pseudorandom (see Theorem 2.2). A lower
bound for the main term involving only occurrences of fstr is obtained through
Lemma 4.2 and is consequently shown to dominate all other terms.
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