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Abstract

The k-core, defined as the largest subgraph of minimum degree k, of the random graph
G(n,p) has been studied extensively. In a landmark paper Pittel, Wormald and Spencer
[Journal of Combinatorial Theory, Series B 67 (1996) 111–151] determined the thresh-
old dk for the appearance of an extensive k-core. Here we derive a multi-type Galton-
Watson branching process that describes precisely how the k-core is “embedded” into
the random graph for any k ≥ 3 and any fixed average degree d = np > dk . This gener-
alises prior results on, e.g., the internal structure of the k-core.
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1 Introduction

1.1 Background

For any k ≥ 3 the k-core Ck(G) of a graph G is defined as the (unique) max-
imal subgraph of G of minimum degree k. For fixed d > 0 let G = G(n,d/n)
denote the random graph on the vertex set [n] = {1, . . . ,n} in which any two ver-
tices are connected with probability p = d/n independently. Pittel, Wormald
and Spencer [13] were the first to determine the precise threshold dk beyond
which the k-core Ck(G) is non-empty w.h.p. Specifically, for any k ≥ 3 there is
a function ψk : (0,∞) → [0,1] such that for any d ∈ (0,∞) \ {dk } the sequence
(n−1|Ck(G)|)n converges to ψk(d) in probability. Furthermore, Pittel, Wormald
and Spencer pointed out that a simple “branching process” heuristic predicts
the correct threshold and the correct size of the k-core, and this argument has
subsequently been turned into an alternative proof of their result [11,14].

The aim of the present paper is to enhance this branching process perspec-
tive of the k-core problem. More specifically, we are concerned with the fol-
lowing question. Fix k ≥ 3, d > dk and let s > 0 be an integer. Generate a
random graph G and mark each vertex according to σk,G : V (G) → {0,1} , v �→
1 {v ∈Ck(G)} . Further, for a vertex v in G we let Gv denote the component of
v . Then (Gv ,v,σk,Gv ) is a rooted {0,1}-marked graph, whose marks indicate the
membership of the k-core of the component Gv . Now, pick a vertex v uni-
formly at random and let ∂s[G v , v ,σk,G v ] denote the isomorphism class of the
finite rooted {0,1}-marked graph obtained by deleting all vertices at distance
greater than s from v from G v . Our aim is to determine the distribution of
∂s[G v , v ,σk,G v ]. Of course, without the marks the standard branching process
analogy yields convergence to the “usual” Galton-Watson tree T (d) with Po(d)
offspring. The point of the present paper is to exhibit a multi-type branching
process that yields the limiting distribution of the {0,1}-marked subgraph.

1.2 Results

To accomodate the non-trivial correlations between the k-core and the “mantle”
(i.e., the vertices outside the core) we will introduce a Galton-Watson process
T̂ (d ,k,p) that posseses five different vertex types, denoted by 000, 001, 010, 110,
111. Setting

q = q(d ,k,p) =P
[
Po(dp) = k−1|Po(dp) ≥ k−1

]
, (1.1)

we define p000 = 1− p, p010 = pq and p110 = p(1− q). The process starts with
a single vertex v0, whose type is chosen from {000,010,111} according to the



g000(x) = exp(d(1−p)x000)

∑k−2
h=0(dp)h(qx010 + (1−q)x110)h/h!∑k−2

h=0(dp)h/h!
,

g001(x) = q̄
(
exp(d(1−p)x001)

(
qx010 + (1−q)x110

)k−2
)

+ (1− q̄)

(
exp(d(1−p)x000)

∑k−3
h=0(dp)h(qx010 + (1−q)x110)h/h!∑k−3

h=0(dp)h/h!

)
,

g010(x) = exp(d(1−p)x001)
(
qx010 + (1−q)x110

)k−1 ,

g110(x) = exp(d(1−p)x001)

∑
h≥k (dpx111)h/h!∑

h≥k (dp)h/h!
,

g111(x) = exp(d(1−p)x001)

∑
h≥k−1(dpx111)h/h!∑

h≥k−1(dp)h/h!
.

Fig. 1. The generating functions gz1z2z3 (x).

distribution (p000,p010,p111). Subsequently, each vertex of type z1z2z3 spawns
a random number of vertices of each type. The offspring distributions are de-
fined by the generating functions gz1z2z2 (x) detailed in Figure 1, where we denote
x = (x000,x001,x010,x110,x111) and

q̄ = q̄(d ,k,p) =P
[
Po(dp) = k−2|Po(dp) ≤ k−2

]
.

Finally, we turn the resulting Galton-Watson tree into a {0,1}-marked tree rooted
at v0 by giving mark 0 to all vertices of type 000, 001 or 010, and mark 1 to all
others. Let T (d ,k,p) signify the resulting (possibly infinite) random rooted {0,1}-
marked tree.

Theorem 1.1 Assume that k ≥ 3 and d > dk. Let s ≥ 0 be an integer and let τ be a
rooted {0,1}-marked tree. Moreover, let p∗ be the largest fixed point of

φd ,k : [0,1] → [0,1], p �→P
[
Po(dp) ≥ k−1

]
. (1.2)

Then
1

n

∑
v∈V (G)

1
{
∂s[G ,v,σk,Gv ] = ∂s[τ]

}
converges to P

[
∂s[T (d ,k,p∗)] = ∂s[τ]

]
in probability.

Since we will derive our result from the convergence of the empirical distribu-
tion of the marked neighbourhoods of vertices v in V (G), our proof will involve
several statements about the convergence of probability distributions on the set
of isomorphism classes of rooted {0,1}-marked graphs.



2 Related work

Since the work of Pittel, Wormald and Spencer [13] several different arguments
for determining the location of the k-core for k ≥ 3 have been suggested. Some
results on the local structure of the core and the mantle follow directly from these
analyses. For instance, the Poisson cloning model [9] immediately implies that
the internal local structure of the k-core can be described by a simple (single-
type) Galton-Watson process. Riordan also pointed out that this local descrip-
tion follows from his analysis [14]. Furthermore, Cooper [2] derived the asymp-
totic distribution of the internal and the external degree sequences of the ver-
tices in the mantle, i.e., of the number of vertices with a given number of neigh-
bours in the core and a given number of neighbours outside.

The contribution of the present work is that we exhibit a branching process
that describes the structure of the core together with the mantle. Neither the
construction of the core via the “peeling process” nor the branching process
analogy from [11,13,14] reveal how the core “embeds” into the mantle. In fact,
even though [2] asymptotically determines the degree distribution of the core
along with the combined degrees of the vertices in the mantle, the conditional
random graph is not uniformly random subject to these.

Structures that resemble cores of random (hyper)graphs have come to play
an important role in the study of random constraint satisfaction problems. This
was first noticed in non-rigorous but analytic work based on ideas from statisti-
cal physics (see [10] and the references therein). Indeed, in the physics literature
it was suggested to characterise the core by means of a “message passing” al-
gorithm called Warning Propagation [10, Chapter 18]. A similar idea is actually
implicit in Molloy’s paper [12, proof of Lemma 6].

3 Proof outline

There is a very natural formulation of Warning Propagation to identify the k-
core of a given graph G . It is based on introducing “messages” on the edges of
G and marks on the vertices of G , both with values in {0,1}. These will be up-
dated iteratively in terms of a “time” parameter t ≥ 0. At time t = 0 we start with
the configuration in which all messages are equal to 1, i.e., μv→w (0|G) = 1 for
all {v,w} ∈ E(G). Inductively, writing ∂v for the neighbourhood of vertex v and
abbreviating ∂v \w = ∂v \ {w}, we let

μv→w (t +1|G) = 1

{ ∑
u∈∂v\w

μu→v (t |G) ≥ k−1

}
. (3.1)



The messages are “directed”. That is, at each time t ≥ 0 there are two messages
μv→w (t |G), μw→v (t |G) travelling along the edge {v,w}. Additionally, the mark of
v ∈ [n] at time t is

μv (t |G) = 1

{ ∑
u∈∂v

μu→v (t |G) ≥ k

}
. (3.2)

It is easy to see that the messages converge to a fixed point for any G , and that
the set of vertices marked one in the fixed point coincides with the k-core. Our
aim is to show that the multi-type branching process T (d ,k,p∗) describes the
distribution of the Warning Propagation fixed point on the infinite Po(d) Galton-
Watson tree. The key step of the proof is to turn the problem of tracing how
Warning Propagation passes messages from the “bottom” of the Galton-Watson
tree up toward the root into a process where messages are passed “top-down”,
i.e., in the fashion of a branching process.

But first we will reduce the study of the Warning Propagation fixed point
on G to the study of Warning Propagation on the (infinite) Galton-Watson tree
with Po(d) offspring. Let v be a vertex in T (d) and let w be its parent. Let
μv↑(t |T (d)) = μv→w (t |T (d)) denote the “bottom-up” message from v to w . Fur-
thermore, define

μv0↑(t |T (d)) = 1

{ ∑
w∈∂v0

μw→v0 (t |T (d)) ≥ k−1

}
.

Then the following fixed point problem will help us to make a connection be-
tween Warning Propagation on G and on the Galton-Watson tree.

Lemma 3.1 Suppose d > dk and let p∗ be the largest fixed point of the function
φd ,k from (1.2). Thenφd ,k is contracting on [p∗,1]. Moreover, it holds thatψk(d) =
P

[
Po(dp∗) ≥ k

]=φd ,k+1(p∗).

The above lemma together with the recursive structure of T (d) imply that the
sequence (μv0↑(t |T (d)))t≥0 converges almost surely to a random variable whose
expectation is p∗. By the definition of the Warning Propagation marksμv0 (t |T (d))
at v0 it is easily verified that this implies that (μv0 (t |T (d)))t≥0 converges to ψk(d)
in probability as t tends to infinity. On the other hand, the standard branch-
ing process analogy implies that the relative number of vertices marked with
μv (t |G) = 1 in G converges to the probability that the root of a standard Galton-
Watson tree with Po(d) offspring is marked with 1 after t iterations of Warning
Propagation on the tree (asn tends to infinity). Sinceψk(d) is the asymptotic size
of Ck(G), we obtain that in the case of the random graph G , a bounded number
of iterations of the Warning Propagation message passing algorithm on G suffice



to obtain an accurate approximation of the k-core w.h.p.
It remains to determine the limit of the distributions of {0,1}-marked rooted

trees obtained by marking T (d) with the Warning Propagation marks μv (t |T (d))
at time t (as t tends to infinity). We begin with determining the limit of the dis-
tribution of the first s levels of T (d) marked with the messages μv↑(t |T (d)) from
vertices v to their parent. Let,

θsd ,k,t =L (∂s[T (d),v0,μ ·↑(t |T (d))])

be the distribution of the isomorphism class of the obtained tree. The key feature
of the messages μv↑(t |T (d)) is that they are solely determined by the tree pend-
ing on v and are therefore much more convenient to work with. On the other
hand they also contain all the information that we need to compute the Warning
Propagation marks μv (t |T (d)). The recursive structure of T (d) and the results
established in the first part of the poof suggest that the “boundary messages”
sent out by the vertices at distance precisely s from v0 converge to a sequence of
mutually independent Be(p∗) variables. Since the messages limt→∞μu↑(t |T (d))
for vertices u at distance less than s from the root v0 are determined by the
“boundary messages”, the expected limiting distribution is the one obtained by
creating the first s levels of a random tree T (d), marking each vertex at distance
precisely s by an independent Be(p∗) “message”, and passing the messages up
to the root (iteratively in terms of t ). Let μ∗

v↑(t |T (d), s) denote the corresponding
mark of each vertex v in T (d) and define

θs,∗
d ,k =L

(
∂s[T (d),v0,μ∗

·↑(s|T (d), s)])
)

.

Then the following lemma confirms this hypothesis.

Lemma 3.2 We have limt→∞θsd ,k,t = θs,∗
d ,k for all s ≥ 0.

We proceed by constructing a “top-down” process that produces the limiting
distribution of the truncated tree. More precisely, define a random {0,1}-marked
tree T ∗(d ,k) by means of the following two-type branching process. Initially,
there is a root vertex v0 that has type 1 with probability p∗ and type 0 with prob-
ability 1− p∗. The offspring of a type 0 vertex is Po(d(1− p∗)) type 0 vertices
and independently Po<k−1(dp∗) type 1 vertices. Further, a type 1 vertex spawns
Po(d(1−p∗)) type 0 offspring and independently Po≥k−1(dp∗) type 1 offspring.
The mark of each vertex v , denoted by μ∗

v↑, is identical to its type. Then the fixed
point property of p∗ implies the following lemma.

Lemma 3.3 For any s ≥ 0 we have L (∂s[T ∗(d ,k)]) = θs,∗
d ,k .



Lemmas 3.2 and 3.3 show that the marks μ∗
v↑ of T ∗(d ,k) correspond to the

“upward messages” that are sent toward the root in the tree T (d). Our ultimate
interest is in the marks μv (t |T (d)). To compute these marks on T (d) it remains
to get a handle on the Warning Propagation messages from vertices to their chil-
dren. Of course, in the tree T (d) these “top-down“ messages and the Warning
Propagation marks can be computed recursively from the messages μv↑(t |T (d)).
In the next part of the proof we are going to mimic this recursive construction of
the “top-down” messages and marks on T (d) and add two corresponding bits to
the mark of each vertex in T ∗(d ,k). Let T̂

∗
(d ,k) signify the resulting tree. Since

the construction of the additional bits on T ∗(d ,k) matches with the construction
of the Warning Propagation marks and messages from vertices in T (d) to their
children, it holds that the distribution of the analogously marked Galton Watson
tree converges to T̂

∗
(d ,k). In the last part of the proof we make the connection

to the branching process T̂ (d ,k,p∗). We will show that for every vertex in the
supplemented tree T̂

∗
(d ,k) the distribution of the number of children of each

type coincides with the offspring distribution determined from the generating
functions gz1z2z3 , which implies the following lemma.

Lemma 3.4 We have L ([T̂
∗

(d ,k)]) =L ([T̂ (d ,k,p∗)]).

Finally, we obtain our main result from the above statements by reformulat-
ing it within the theory of local weak convergence.
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