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Abstract

Consider a variant of the graph diameter of a polyhedron where each step in a walk
between two vertices travels maximally in a circuit direction instead of along inci-
dent edges. Here circuit directions are non-trivial solutions to minimally-dependent
subsystems of the presentation of the polyhedron. These can be understood as the
set of all possible edge directions, including edges that may arise from translation
of the facets.

It is appealing to consider a circuit analogue of the Hirsch conjecture for graph
diameter, as suggested by Borgwardt et al. [2]. They ask whether the known coun-
terexamples to the Hirsch conjecture give rise to counterexamples for this relaxed
notion of circuit diameter. We show that the most basic counterexample to the
unbounded Hirsch conjecture, the Klee-Walkup polyhedron, does have a circuit
diameter that satisfies the Hirsch bound, regardless of representation.
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1 Introduction

Given a convex polyhedron, its graph (also called its skeleton) is the undirected
graph formed by its vertices and edges. The graph diameter of a polyhedron
is then defined to be the graph diameter of its skeleton. This is an interesting
quantity since it gives us a lower bound on the performance of the simplex
method for linear programming. It turns out that most known polyhedra have
diameters at most the Hirsch bound of f−d, where f and d are the number of
facets and the dimension, respectively. The main exceptions are unbounded
polyhedra based on the Klee-Walkup example [3] and non-Hirsch polytopes
based on the constructions of Santos [4].

Here we consider the circuit diameter, where instead of being restricted
to walk along edges of a polyhedron, one can walk in the direction of any
‘potential edges’ obtained by translating its facets. In particular, the set of
permissible directions at a vertex has no connection with edges incident to it;
circuit steps can go through the interior of the polyhedron and end when the
direction is traversed as far as possible maintaining feasibility. Because of this,
it is challenging to prove anything about the circuit diameter independent
of how the polyhedron is realized. In this note, we show that the original
unbounded non-Hirsch polyhedron of Klee and Walkup [3] does satisfy the
Hirsch bound in this relaxed framework, independent of realization.

2 Circuit Walks and Diameters

2.1 Background and Definitions

While the graph diameter of a polyhedron considers walks along its edges, the
circuit diameter considers walks that use the circuits of a polyhedron, defined
as follows:

Definition 2.1 Given a polyhedron

P = {x ∈ R
n : A1x = b1, A2x ≥ b2},

where Ai ∈ Q
di×n and bi ∈ R

di for i = 1, 2, the circuits or elementary vectors
C(A1, A2) of A1 and A2 are defined as the set of vectors g ∈ ker(A1) \ {0} for
which A2g is support-minimal in the set {A2x : x ∈ ker(A1) \ {0}}, where g
is normalized to coprime integer components.

It turns out that the set C(A1, A2) consists of exactly the possible edge
directions of P for varying b1 and b2 [7]. Moreover, at any non-optimal feasible



point of the linear program

min{cTx : A1x = b1, A2x ≥ b2},

an augmenting direction can always be found from the set C(A1, A2).

Now, for a polyhedron P and the set of circuits C associated with A1 and
A2, given two vertices u and v of P define a circuit walk of length k to be a
sequence u = y0, . . . , yk = v with
(i) yi ∈ P

(ii) yi+1 − yi = αig
i for some gi ∈ C and αi > 0

(iii) yi + αgi �∈ P for α > αi

for all i = 0, 1, . . . , k − 1. Observe that edge walks from u to v are ex-
actly those circuit walks where each pair yi, yi+1 are adjacent vertices of P .
Hence by considering all possible circuit directions at each point yi, instead of
directions corresponding to incident edges, we see that the circuit walks are
generalizations of edge walks. The circuit distance from u to v is now defined
as the length of the shortest circuit walk from u to v, and the circuit diameter
of P is the largest circuit distance between any two vertices of P . Observe
that the circuit distance is a lower bound for the graph distance. For more
context on circuit diameter, see [2] and [1].

2.2 Variants of the Hirsch Conjecture

There are polyhedra whose circuit diameter and graph diameter are the same
– a trivial example is the d-dimensional simplex, which has both graph and
circuit diameter equal to 1. Also, take the d-dimensional cube with vertices
all vectors in {0, 1}d. Its facet description is

{(x1, x2, . . . , xd) : 0 ≤ xi ≤ 1, i = 1, 2, . . . , d}.

This representation of the d-cube has circuits {±e1,±e2, . . . ,±ed}, where
ei is the vector with a 1 in the ith position and 0’s elsewhere. Hence its circuit
diameter is also d. It is not clear if this can change in another representation
of the d-cube.

The simplex and the cube are critical examples that motivated the well-
known Hirsch conjecture. The conjecture can be stated as follows:

Conjecture 2.2 (Hirsch, 1957) Let f > d ≥ 2. Let P be a d-dimensional
polyhedron with f facets. Then the combinatorial diameter of P is at most
f − d.



This is not true in general. Klee and Walkup in [3] found a counterexample
that is an unbounded polyhedron in dimension 4, with 8 facets and diameter
5; this is featured in the next section. The bounded case was finally settled
by Santos [4], which has stimulated activity in this area. The conjecture does
however hold for many interesting classes of polyhedra. See [5] for a survey of
recent research related to the Hirsch conjecture.

While the the Hirsch conjecture admits some hard-to-find exceptions for
graph diameter, the situation for circuit diameter is still unresolved.

Conjecture 2.3 [2] The circuit diameter of a d-dimensional polyhedron with
f facets is bounded above by f − d.

In Section 3, we show that for circuit diameter, the most basic non-Hirsch
unbounded polyhedron actually does satisfy the Hirsch bound, independent of
representation. This provides some evidence for Conjecture 2.3 by establishing
it in one place where Hirsch does not hold for the graph diameter.

3 The Klee-Walkup Polyhedron

The first unbounded non-Hirsch polyhedron was given by Klee and Walkup
in [3], where they constructed a 4-dimensional polyhedron with 8 facets and
diameter 5. Its facet description is {x ∈ R

4 : Ax ≥ b} where

A =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

−6 −3 0 1

−3 −6 1 0

−35 −45 6 3

−45 −35 3 6

1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

and b =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

−1
−1
−8
−8
0

0

0

0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

We call the combinatorial class of this polyhedron U4, and this particular
realization by Ũ4. Its vertex-edge graph is shown in Figure 1 5 . Here the

5 All illustrations in this note were produced using the Geogebra software, see http://

www.geogebra.org.

http://www.geogebra.org
http://www.geogebra.org


vertices are indexed by the four facets containing each one, while the points
labelled with R’s represent extreme rays. It is clear from the graph that vertices
V5678 and V1234 are at graph distance five apart.

Fig. 1. The skeleton of U4.

We now prove the following result:

Theorem 3.1 The circuit diameter of the Klee-Walkup polyhedron U4 is at
most 4, independent of representation.

Proof. First we demonstrate the existence of a circuit walk of length 4 from
V5678 to V1234. Observe that we can take two edge steps as follows: V5678
→ V1678 → V1478. Vertices V1478 and V1234 are both contained in the 2-
face determined by facets 1 and 4, so we can complete the walk on this face.
Note that this 2-face is an unbounded polyhedron on six facets. Figure 2 is a
topological illustration of this face, showing the order of the vertices and rays.

Now consider a vector g corresponding to the edge direction from V1458 to
V1345 – this is the blue vector in Figure 3. Note that this is always a circuit
direction in any representation of U4 since it corresponds to an actual edge of
the polyhedron.

To see that g is a feasible direction at V1478, consider vector h in the
edge direction from V1478 to V1458, and vector r in the direction of ray R124.



Fig. 2. The 2-face determined by facets 1 and 4.

Observe that g and −h are the two incident edge directions at V1458, and so
r must be a strict conic combination of g and −h, i.e. r = α1(g)+α2(−h) for
α1, α2 > 0. By rearranging terms we see that g is a strict conic combination
of h and r: g = (α2/α1)h + (1/α1)r, with α2/α1, 1/α1 > 0. Feasibility of r
and h at V1478 implies that g is a feasible direction at V1478.

Fig. 3. Feasibility of the circuit direction g.

Now starting at V1478 traverse g as far as feasibility allows. This direction
is bounded since we exit the polyhedron when taking g from V1458. We will
eventually exit the 2-face at a point along the boundary, and at one of the
following positions:

• exactly at V1234,

• on the edge connecting V1234 and V1345, or

• on the ray R124 emanating from V1234.

Hitting exactly V1234 gives a circuit walk of length 3 from V5678, while
the other two cases give circuit walks of length 4 since we only need one step
to V1234. These two situations are illustrated in Figure 4.

The argument is the same for the reverse direction (V1234 to V5678). We
can construct a similar walk by first traversing edges V1234→ V2346→ V3467,



Fig. 4. Getting from V1478 to V1234 in at most 2 steps.

and then taking a maximal step in the circuit direction arising from the edge
connecting V1467 and V1678. Here we stay in the 2-face determined by facets
6 and 7. We can then arrive at V5678 in at most two steps from V3467. �

This result illustrates that the first counterexample to the unbounded
Hirsch conjecture does have a circuit diameter satisfying the Hirsch bound.
Note that this walk used actual edge directions, and so is more restrictive than
circuit directions. We further remark that we computed the circuit diameter
for Ũ4 using brute force and it was 4 [6]. We do not know if it could be lower
in some other representation.
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