
On the generalised colouring numbers
of graphs that exclude a fixed minor

Jan van den Heuvel
1

Department of Mathematics
London School of Economics and Political Science

London, United Kingdom

Patrice Ossona de Mendez
2

Centre d’Analyse et de Mathématique Sociales (CNRS UMR 8557)
École des Hautes Études en Sciences Sociales

Paris, France

Roman Rabinovich
3

Technische Universität Berlin, Institut für Softwaretechnik und Theoretische
Informatik, Lehrstuhl für Logik und Semantik

Berlin, Germany

Sebastian Siebertz
4

Technische Universität Berlin, Institut für Softwaretechnik und Theoretische
Informatik, Lehrstuhl für Logik und Semantik

Berlin, Germany

Available online at www.sciencedirect.com

www.elsevier.com/locate/endm

http://www.elsevier.com/locate/endm
http://www.sciencedirect.com


Abstract

The colouring number col(G) of a graph G is the minimum integer k such that there
exists a linear ordering of the vertices of G in which each vertex v has back-degree
at most k, i.e. v has at most k neighbours u with u < v. The colouring number is
a structural measure that measures the edge density of subgraphs of G. For r ≥ 1,
the numbers colr(G) and wcolr(G) generalise the colouring number, where col1(G)
and wcol1(G) are equivalent to col(G). For increasing values of r these measures
converge to the well-known structural measures tree-width and tree-depth. For an
n-vertex graph, coln(G) is equal to the tree-width of G and wcoln(G) is equal to the
tree-depth of G.

We show that if G excludes Kt as a minor, then colr(G) ≤
(

t
2

)

· (2r + 1) and

wcolr(G) ≤
(

t
2

)r
· (2r + 1).

It is easily observed that if G is planar, then colr(G) ≤ 5r + 3. The technically
most demanding part of the paper is to show that for those graphs, wcolr(G) ≤
5r5. These results generalise to bounded genus graphs, i.e. if G is of genus g, then
colr(G) ≤ (2g + 3)(2r + 1) and wcolr(G) ≤ 2g(2r + 1) + 5r5.

Keywords: Generalised colouring numbers, planar graphs, excluded minors

1 Preliminaries

Generalised colouring numbers have been introduced by Kierstead and Yang
in the context of colouring games and marking games on graphs [7], and
received much attention recently, as they can be used to characterise nowhere
dense classes of graphs [9,11]. They find algorithmic applications e.g. for the
constant factor approximation of r-dominating sets on bounded expansion
classes [4] or for the construction of sparse neighbourhood covers on nowhere
dense classes [6]. Let us quickly provide the required background.

All graphs in this paper are simple and undirected. For a graph G, we write
Π(G) for the set of linear orders on V (G). A vertex u is weakly r-reachable
from v with respect to an order ≤ ∈ Π(G), if there exists a path P of length
ℓ, 0 ≤ ℓ ≤ r, between u and v such that u is minimum in V (P ) with respect
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to ≤. Let WReachr[G,≤, v] be the set of vertices that are weakly r-reachable
from v with respect to ≤.

A vertex u is strongly r-reachable from v with respect to an order ≤ ∈ Π(G),
if there is a path P of length ℓ, 0 ≤ ℓ ≤ r, connecting u and v such that u ≤ v

and such that all inner vertices w of P satisfy w > v. Let SReachr[G,≤, v] be
the set of vertices that are strongly r-reachable from v with respect to ≤.

The weak r-colouring number wcolr(G) of G is defined as

wcolr(G) = min
≤∈Π(G)

max
v∈V (G)

|WReachr[G,≤, v]|,

and the r-colouring number colr(G) of G is defined as

colr(G) = min
≤∈Π(G)

max
v∈V (G)

|SReachr[G,≤, v]|.

As noticed in [7], these invariants are related by the inequalities colr(G) ≤
wcolr(G) ≤ (colr(G))r. Using probabilistic arguments, Zhu [11] was the first
to give a non-trivial bound for colr(G) in terms of the densities of shallow
minors of G, and his results were improved in [5]. In particular, when a graph
G excludes a complete graph Kt as a minor, one deduces an upper bound for
colr(G), which grows as fast as (c · r · t)r for some constant c. One of our main
results is a dramatic decrease of this bound: we prove that if G excludes Kt

as a minor, then colr(G) ≤
(

t

2

)

· (2r + 1) and wcolr(G) ≤
(

t

2

)r
· (2r + 1). The

second result is that for graphs G with genus g, wcolr(G) ≤ 2g(2r + 1) + 5r5.

2 The r-colouring number of classes that exclude a mi-

nor

Let G be a graph. We call a path P in G a shortest path if there is no shorter
path between its endpoints. A shortest paths decomposition (compare to [1])
of G is a sequence P0, . . . , Pℓ of paths such that

⋃ℓ

i=0 V (Pi) = V (G), defined
inductively as follows. Let P0 be an arbitrary shortest path in G and let
G0 := P0. For i > 0, let Pi = v0, . . . , vn be a shortest path in G − E(Gi−1)
such that V (Gi−1) ∩ V (Pi) ⊆ {v0, vn} and let Gi := Gi−1 + Pi (the graph
induced by V (Gi−1) ∪ Pi). Let Ci be the set of components of G − Gi. The
separating number of a component C ∈ Ci is the minimum number s of paths
Q1, . . . , Qs ∈ {P0, . . . , Pℓ} such that

⋃

1≤j≤s V (Qs) separates C from G − Gi.



The width of P0, . . . , Pℓ is the maximum separating number over all i and all
C ∈ Ci.

Theorem 2.1

(1) If G has genus g, then G has a shortest paths decomposition of width
2g + 2 [2,10].

(2) If G excludes Kt as a minor, then G has a shortest paths decomposition
of width

((

t

2

)

− 1
)

[3].

From a shortest paths decomposition P0, . . . , Pℓ, we define a linear order
⊑ on V (G) as follows. For v, w ∈ V (G), set v ⊑ w if v ∈ V (Pi) = v0, . . . , vn,
w ∈ V (Pj) \ V (Pi) and i < j, or i = j, v = vx, w = vy and x < y. We write
P (v) for the path Pm with minimum index m such that v ∈ V (Pm). In the
following, let v ∈ V (G) and let m be such that P (v) = Pm. The proof of
Theorem 2.5 is based on the following observations.

Lemma 2.2 Let P be a shortest path in a graph G. Then |Nr(v) ∩ V (P )| ≤
2r + 1 for all v ∈ V (G), where Nr(v) denotes the r-neighbourhood of v (con-
taining v).

Lemma 2.3 WReachr[G,⊑, v] ⊆ V (Gm).

Lemma 2.4 Let C be a component of G−Gi for some i < m which does not
contain v. Then v 6∈ WReachr[G,⊑, u] for all u ∈ V (C).

Theorem 2.5 If G has a shortest paths decomposition of width k, then

(1) colr(G) ≤ (k + 1) · (2r + 1), and

(2) wcolr(G) ≤ (k + 1)r · (2r + 1).

Proof. Consider the component C in G−Gm−1 which contains v. It is sepa-
rated by k paths whose vertices are the only strongly reachable vertices from
v. Furthermore, at most r+1 vertices on P (v) are reachable. For wcol, the ar-
gument is similar; the number of paths can be bounded by a simple induction
on r. ✷

Corollary 2.6 If G excludes Kt as a minor, then colr(G) ≤
(

t

2

)

· (2r+1) and

wcolr(G) ≤
(

t

2

)r
· (2r + 1).



3 The weak r-colouring number of planar graphs

We fix a planar graph G and as adding edges to a graph can only increase its
weak r-colouring number, we may assume without loss of generality that G is
maximally planar and hence 3-connected. It holds that wcol1(G) is equal to
the degeneracy of G plus one, so we always assume that r ≥ 2.

We inductively define a shortest paths decomposition of G. Along with
the construction we guarantee that for all i, if C is a component of G − Gi,
then there are at most two paths Pj and Pℓ with j ≤ ℓ ≤ i such that C is
separated from V (Gi) in G by V (Pj) ∪ V (Pℓ). We write S1(C) = Pj and
S2(C) = Pℓ for the least possible j and ℓ with that property and call S1, S2

the separating paths of the component C. Note that if S1 alone separates
C, then S1 = S2. As G is 3-connected, C has at least three neighbours in
V (S1) ∪ V (S2). Hence some P ∈ {S1, S2} has at least two C-neighbours, i.e.
vertices which are adjacent to a vertex of C.

Our construction. The path P0 is an arbitrary shortest path in G. Let
i > 0 and assume P0, . . . , Pi−1 have been defined such that for each component
C of G − V (Gi−1) there are at most two separating paths S1(C) and S2(C).
Let C be a component of G−V (Gi−1). Then some P = w0, . . . , wℓ ∈ {S1, S2}
has two C-neighbours. Let wmin (wmax) be the C-neighbours of P with the
least (greatest) index. We define Pi as a shortest path between wmin and wmax

in G − E(Gi−1) with internal vertices from C (note that Pi has an internal
vertex as P is a shortest path in G−Gi−1). We say that Pi is anchored at P .
The procedure stops when no v ∈ V (G) \ V (Gi−1) can be found, hence when
V (Gi) = V (G), i.e. when a shortest paths decomposition of G was found.

The next lemma follows easily by the Jordan Curve Theorem and our
choice of anchoring new paths at minimal and maximal C-neighbours.

Lemma 3.1 For i > 0, if C is a component of G − Gi, then there are two
paths Pj and Pℓ with j ≤ ℓ ≤ i such that C is separated from V (Gi) in G by
V (Pj) ∪ V (Pℓ).

Lemma 3.2 Let C be a component of G−Gi. Then P ∈ {S1(C), S2(C)} (for
P 6= P0) has an inner vertex which is a C-neighbour.

Proof. S1 and S2 are paths with minimal indexes with the separator property.
Their endpoints lie on paths with smaller indices. ✷



Let P be a path from the shortest paths decomposition. The chain χ(P ) of
P is the sequence Q0, . . . , Qn of paths from the shortest paths decomposition
where Q0 = P , Qn = P0 and for 0 < j < n, Qj = P ′ if and only Qj−1 is
anchored at P ′. For w ∈ V (G), χ(w) is defined as χ(P (w)). Note that any
two chains χ1 = U1, . . . , Um and χ2 = U ′

1, . . . , U
′
n coincide from some path on.

The meeting path of χ1 and χ2 is the path Pi such that Pi = Ui = U ′
j for the

least i (and j).

Lemma 3.3 In the subgraph induced by the vertices of χ(v), there are at most
r3 weakly r-reachable paths from v.

Proof. Let 0 ≤ i ≤ r and let Pj(i) be the path of the chain with the minimum
index such that Pj(i) is weakly reachable from v in i steps. Let χi be the
chain that contains only the paths with index at least as large as j(i) (in the
chain order). We show by induction on i that there are at most i · r pairs of
endpoints of paths from χi which are weakly r-reachable from v. Clearly, we
reach only P (v) in 0 steps. Let i > 0 and assume that the claim holds for all
ℓ < i. We can reach only an inner vertex on Pj(i−1) in i− 1 steps (if we could
reach an endpoint, then j(i− 1) would not be the minimal index).

We count the tuples of endpoints of paths which lie in χi and which are
weakly reachable in r− i steps from some inner vertex v′ of Pj(i−1). As Pj(i−1)

separates χi−1 − Pj(i−1) from PJ(i), the path Pj(i) is reached in one step from
Pj(i−1) and gives us one additional endpoint tuple (or Pj(i−1) = Pj(i) and we
are done in this step).

Now one endpoint, say x, of Pj(i−1) is an endpoint of Pj(i). Otherwise let
P be the path at which Pj(i−1) is anchored. Then P separates Pj(i−1) from
Pj(i) and Pj(i) is not reachable from Pj(i−1) in one step.

All paths P from χ that are weakly reachable from Pj(i−1) in χi have x as
an endpoint, otherwise P separates Pj(i−1) from Pj(i). Thus we reach at most
r − i additional paths with a different second endpoint in r − i steps from
Pj(i−1).

To conclude the proof, note that χr contains all weakly r-reachable paths.
For every pair (x, y) of endpoints, there are at most r weakly reachable paths
with those endpoints (x, y). This is because every such path P separates the
chain and x and y are smaller than every inner vertex of P with respect to ⊑.

Hence in χi there are at most i · r2 weakly r-reachable paths. ✷

Lemma 3.4 There are at most 2r4 weakly reachable paths.



Proof. For a chain χ = Q1, . . . , Qm, let ∼χ be the chain Q2, . . . , Qm. For
i > 0 and a path Pi from the decomposition let C(Pi) be the component
of G − Gi−1 which contains an inner vertex of Pi (this is well defined). For
j = 1, 2, let χj(Pi) = χ(Sj(C)), i.e. the chains of the separating paths.

Then for every S ∈ {S1(C), S2(C)}, χ1(S) ∈ {∼χ1(Pi), ∼χ2(Pi)} or χ2(S) ∈
{∼χ1(Pi), ∼χ2(Pi)}. As one needs at least one step to change a chain, we can
reach at most 2r chains in r steps. The result follows by Lemma 3.3. ✷

Theorem 3.5 If G is planar, then wcolr(G) ≤ 2r4 · (2r + 1) ∈ O(r5).

It is well known (see e.g. [8], Lemma 4.2.4, or [10]) that for a graph of genus
g > 0, there exists a non-separating cycle C which consists of two shortest
paths such that G− C has genus g − 1. We can eliminate those cycles in the
first place and obtain the planar case.

Theorem 3.6 If G is of genus g, then wcolr(G) ≤ (2g + 2r4)(2r + 1).
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