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Abstract

We consider high-order connectivity in k-uniform hypergraphs defined as follows:
Two j-sets are j-connected if there is a walk of edges between them such that two
consecutive edges intersect in at least j vertices. We describe the evolution of j-
connected components in the k-uniform binomial random hypergraph Hk(n, p). In
particular, we determine the asymptotic size of the giant component shortly after
its emergence and establish the threshold at which Hk(n, p) becomes j-connected
with high probability. We also obtain a hitting time result for the related random
hypergraph process {Hk(n,M)}M – the hypergraph becomes j-connected exactly
at the moment when the last isolated j-set disappears. This generalises well-known
results for graphs and vertex-connectivity in hypergraphs.

Keywords: Random hypergraphs, high-order connectivity, hitting time, giant
component, phase transition.

1 The authors are supported by Austrian Science Fund (FWF): P26826, W1230.
2 Email: {cooley,kang,ckoch}@math.tugraz.at

Available online at www.sciencedirect.com

www.elsevier.com/locate/endm

http://www.elsevier.com/locate/endm
http://www.sciencedirect.com


1 Evolution of random graphs

The theory of random graphs was founded in the late 1950s by Erdős and Rényi
describing the evolution of the random graph process {G(n,M)}M . The vertex
set of this process is [n] := {1, . . . , n} and initially there are no edges present.
In each step of the process, add an edge between a pair of vertices chosen
uniformly at random amongst all pairs of vertices that do not already form an
edge. In the early stages of this process, all connected components are small
and then, within very short time, they merge into a single component of linear
size – the giant component. This remarkable phenomenon, first proved in [8],
is known as the phase transition of the random graph process {G(n,M)}M .

It is often more convenient to analyse the binomial random graph G(n, p):
The vertex set is [n] and every pair of vertices is connected by an edge with
probability p independently. Incorporating various strengthenings the phase
transition can be summarised as follows. (All asymptotic statements are with
respect to n → ∞ and by whp we abbreviate “with probability → 1”.)

Theorem 1.1 (Bollobás [2]; �Luczak [11]) Let ε = ε(n) > 0 be a real func-
tion satisfying ε → 0 and ε3n → ∞.

(i) If p = 1−ε
n
, then whp all components in G(n, p) have size O(ε−2 log(ε3n));

(ii) If p = 1+ε
n
, then whp the size of the largest component in G(n, p) is

(1± o(1))2εn, while all other components have size O(ε−2 log(ε3n)).

As we continue to add edges one by one, more and more components
are consumed by the giant component and eventually the graph becomes con-
nected. In fact, Bollobás and Thomason [4] showed that this happens precisely
at the moment when the last isolated vertex disappears – thereby relating a
global graph property to its minimal local obstruction. Denote the hitting time
of connectivity by τc, i.e. τc is the minimal M such that G(n,M) is connected,
and the hitting time for the disappearance of the last isolated vertex by τi.

Theorem 1.2 (Bollobás & Thomason [4]) Whp τc = τi for {G(n,M)}M .

2 Evolution of random hypergraphs – Main results

Given an integer k ≥ 2 a k-uniform hypergraph H consists of a set V of
vertices and a set E of edges, where each edge contains precisely k vertices.
In particular, 2-uniform hypergraphs are simply graphs. Given an integer
1 ≤ j ≤ k − 1 we say that two j-sets (sets of j distinct vertices) J and J ′

are j-connected if there is a sequence of edges e1, . . . , em such that J ⊂ e1,



J ′ ⊂ em and |ei ∩ ei+1| ≥ j for all 1 ≤ i ≤ m−1. A j-component is a maximal
set of pairwise j-connected j-sets. The hypergraph H is j-connected if every
two j-sets are j-connected. A j-set is called isolated if it is not contained in
any edge. Note that connectivity in graphs corresponds to the case k = 2 and
j = 1.

We consider the k-uniform random hypergraph process {Hk(n,M)}M : The
vertex set is [n] and initially there are no edges present. In each step of the
process, we add an edge for a k-set chosen uniformly at random from all k-sets
that do not already form an edge. Instead of analysing this process directly
we usually consider the k-uniform binomial random hypergraph Hk(n, p) with
vertex set [n], where every k-set is an edge with probability p independently.
In this model there are no dependencies between different edges. It is well-
known that both models are very similar and results can be easily transferred
from one to the other using standard techniques (e.g. [9]).

For any k ≥ 2 the case of vertex-connectivity (j = 1) is well-studied and
results analogous to Theorem 1.1 were obtained in [1,3,10,13]. Theorem 1.2
has also recently been extended for vertex-connectivity in k-uniform hyper-
graphs [12].

However, for high-order connectivity (j > 1) not much was known until
recently. This is due to the fact that vertex-connectivity can usually be stud-
ied with tools which are very similar to those used for graphs. By contrast,
analysing high-order connectivity is often significantly more sophisticated and
thus these methods are usually not sufficient. Recently Cooley, Kang, and
Person [7] showed that the sharp threshold for the emergence of the giant
component in Hk(n, p) is

pg :=
1((

k

j

)
− 1

) (
n

k−j

) .

We strengthen this result and provide the asymptotic size of the largest j-
component in the weakly supercritical regime of the phase transition.

Theorem 2.1 Let k ≥ 2 and 1 ≤ j ≤ k−1 be integers. Let ε = ε(n) > 0 be a
real function satisfying ε → 0, ε3nj → ∞ and ε2n1−2δ → ∞, for some constant
δ > 0. Then whp the size of the largest j-component L1 in Hk(n, (1 + ε)pg)
satisfies

|L1| = (1± o(1))
2ε(

k

j

)
− 1

(
n

j

)
,

while all other j-components contain o(εnj) j-sets.



The proof of Theorem 2.1 fundamentally uses a powerful tool, the smooth
boundary lemma, which provides insight into the structure of the unique largest
j-component in the supercritical regime. The precise statement of this lemma
requires a large amount of additional notation and thus we omit it and refer
to [5] for the details. Instead we explain the notion of ‘smooth sets’ on a more
intuitive level in Section 3.1.

An elegant application of the notion of smoothness arises when studying
the threshold for j-connectivity in Hk(n, p). The key idea is that the giant
component contains a smooth set of large size.

Lemma 2.2 Let k ≥ 2 and 1 ≤ j ≤ k − 1 be integers. Let γ = γ(n) > 0 be
a real function satisfying γ → 0 and γ3n → ∞. Then whp the unique largest
j-component L1 in Hk(n, (1 + γ)pg) contains a subset S ⊂ L1 of at least γ3nj

j-sets with the following property for all integers 0 ≤ � < j:

Every �-set L ⊂ [n] is contained in (1± o(1)) |S|
(nj)

(
n

j−�

)
j-sets of S.

Based on Lemma 2.2 we provide an elementary proof showing that the
hypergraph process {Hk(n,M)}M becomes j-connected exactly at the moment
when the last isolated j-set disappears. Let τc = τc(k, j) be the hitting time
for j-connectivity in the random hypergraph process {Hk(n,M)}M and let
τi = τi(k, j) denote the time-step of {Hk(n,M)}M in which the last isolated
j-set disappears.

Theorem 2.3 Let k ≥ 3 and 1 ≤ j ≤ k− 1 be integers. Then whp τc = τi for
{Hk(n,M)}M .

It follows that, in the binomial random hypergraph Hk(n, p), the properties
of being j-connected and having no isolated j-sets share the common sharp
threshold

pc :=
j log n(

n

k−j

) .

In fact we obtain a slightly stronger result.

Theorem 2.4 Let k ≥ 3 and 1 ≤ j ≤ k − 1 be integers. Let ω = ω(n) > 0 be
a real function satisfying ω → ∞ and ω = o(log n).

• If p = j logn−ω

( n

k−j)
, then whp Hk(n, p) contains isolated j-sets (and is therefore

not j-connected);

• If p = j logn+ω

( n

k−j)
, then whp Hk(n, p) is j-connected (and therefore contains no

isolated j-sets).



3 Proof outlines

3.1 Smooth sets in large components

The intuition behind the smooth boundary lemma is the following: For an
arbitrary j-set J , we explore its component via a breadth-first search process,
i.e. generation by generation. If the component of J happens to be large, the
sizes of the generations have a tendency to grow and thus most generations
should have a ‘reasonable’ size already early on in the process. However, once
the generations are not too small, random fluctuations should start to even
themselves out over time. Thus generations should begin to look ‘smooth’
in the sense that any set L ⊂ [n] of at most j − 1 vertices is contained in
approximately the ‘right’ number of j-sets of any smooth generation. Usually
we will only run the exploration process for as long as necessary, resulting in
a partial component. If so, the last generation that is discovered before the
process was stopped is called the boundary and will be of special interest in
the proof of Theorem 2.1, since it contains all the j-sets that are still active.
This will be discussed further in Section 3.2.

In other scenarios, the boundary does not play such a crucial role or may
not be large enough on its own, in which case we may consider the smooth
set given by the union of all smooth generations in the partial component. It
turns out that this union contains almost all j-sets of the partial component.
As an immediate consequence we obtain Lemma 2.2. The details can be found
in [5,6].

3.2 Emergence of the giant component

First we study the number of j-sets in ‘large’ components. For a given j-set
we explore its component via a breadth-first search process and approximate
this process by a supercritical branching process. In order to control the
second moment we have to study two exploration processes and make sure
that one of them being large does not increase the probability of the other
becoming large too much. We first run one exploration process, stop it as soon
as we know that whp it will grow large, and then consider a subprocess of the
second exploration process in which no k-sets containing a j-set from the first
(partial) component is present. The smooth boundary lemma ensures that the
resulting process is still close to a (sufficiently) supercritical branching process.
Therefore the number of j-sets in large components is concentrated around its
expectation and Theorem 2.1 follows by a sprinkling argument. The details
can be found in [5].



3.3 Hitting times and connectivity threshold

It is convenient to split the proof of Theorem 2.3 into two parts: First we anal-
yse the structure of the binomial random hypergraph Hk(n, p) in the regime
where the expected number of isolated j-sets begins to vanish. In particular,
we show that whp in this regime the random hypergraph consists only of one
non-trivial component and isolated j-sets. Then we transfer this structure to
the corresponding time-range in the random hypergraph process {Hk(n,M)}M
by classical contiguity results.

For integer-valued random variables X1, X2, . . . and Y , we say Xn con-

verges in distribution to Y , denoted by Xn
d

−→ Y , if we have P(Xn = i) →
P(Y = i) for every integer i. We apply the Chen-Stein method for Poisson-
approximation to the number Ds of j-sets of degree s ≥ 0 (i.e. j-sets that are
contained in precisely s edges).

Theorem 3.1 Suppose p = j logn+s log logn+cn

( n

k−j)
for some real function cn satis-

fying cn = o(log n). Then we have, for any integer s ≥ 0,

(i) Ds = 0 whp if cn → ∞;

(ii) Ds
d

−→ Po
(

js e−c

j!s!

)
if cn → c ∈ R;

(iii) Ds → ∞ whp if cn → −∞.

Theorem 2.4 is an immediate corollary of Theorem 2.3 and Theorem 3.1.
The details can be found in [6].
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[9] Janson, S., T. �Luczak, and A. Ruciński, “Random graphs”, Wiley-Interscience
Series in Discrete Mathematics and Optimization (Wiley-Interscience, New
York, 2000).
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