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Abstract

We investigate bootstrap percolation with infection threshold r > 1 on the binomial
k-uniform random hypergraph Hk(n, p) in the regime n−1 � nk−2p � n−1/r, when
the initial set of infected vertices is chosen uniformly at random from all sets of
given size. We establish a threshold such that if there are less vertices in the initial
set of infected vertices, then whp only a few additional vertices become infected,
while if the initial set of infected vertices exceeds the threshold then whp almost
every vertex becomes infected. In addition, for k = 2, we show that the probability
of failure decreases exponentially.
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1 Introduction

Bootstrap percolation on a hypergraph with infection threshold r ≥ 1 is a
deterministic infection process which evolves in rounds. In each round every
vertex has exactly one of two possible states: it is either infected or uninfected.
We denote the set of initially infected vertices by Ar(0). We say that a vertex
u is a neighbour of v if there exists an edge containing both u and v. In each
round of the process every uninfected vertex v becomes infected if it has at
least r infected neighbours, otherwise it remains uninfected. Once a vertex
has become infected it remains infected forever. The process stops once no
more vertices become infected and we denote this time step by T . The final
infected set is denoted by Ar(T ).

Bootstrap percolation was introduced by Chalupa, Leath, and Reich [4] in
the context of magnetic disordered systems. Since then bootstrap percolation
processes (and extensions) have been used to describe several complex phe-
nomena: from neuronal activity [1,6] to the dynamics of the Ising model at
zero temperature [7].

In the context of social networks, bootstrap percolation provides a proto-
type model for the spread of ideas. In this setting infected vertices represent
individuals who have already adopted a new belief and a person adopts a new
belief if at least r of his acquaintances have already adopted it.

On the d-dimensional grid [n]d bootstrap percolation has been studied by
Balogh, Bollobás, Duminil-Copin, and Morris [3], when the initial infected set
contains every vertex independently with probability p. For the size of the final
infection set they showed the existence of a sharp threshold. More precisely,
they established the threshold probability pc, such that if p ≤ (1 − ε)pc,
then the probability that every vertex in [n]d becomes infected tends to 0, as
n → ∞, while if p ≥ (1 + ε)pc, then the probability that every vertex in [n]d

becomes infected tends to one, as n → ∞.

Bootstrap percolation has also been studied for several random graph mod-
els. For instance Amini and Fountoulakis [2] considered the Chung-Lu model
[5] where the vertex weights follow a power law degree distribution and the
presence of an edge {u, v} is proportional to the product of the weights of u
and v. Taking into account that in this model a linear fraction of the vertices
have degree less than r and thus at most a linear fraction of the vertices can
become infected the authors proved the size of the final infected set Ar(T )
exhibits a phase transition.

Janson, �Luczak, Turova, and Vallier [8] analysed bootstrap percolation on
the binomial random graph G(n, p) where every edge appears independently



with probability p. For r ≥ 1 and n−1 � p � n−1/r they showed that there
is a threshold such that if the initial number of infected vertices is below the
threshold, then the process infects only a few additional vertices and if the
initial number of infected vertices exceeds the threshold, then almost every
vertex becomes infected.

In this paper we investigate the binomial random hypergraph Hk(n, p),
where every edge (k-tuple of vertices) is present independently with proba-
bility p. We choose the initial infected set uniformly at random and con-
sider bootstrap percolation with infection threshold r > 1 in the regime
n−1 � nk−2p � n−1/r. The main contribution of this paper are:

• strengthening of the result in [8], by showing that the failure probability
decreases exponentially (Theorem 2.2);

• extension of the original results from graphs to hypergraphs (Theorem 2.1).

2 Main Results

We extend the following result, which was originally proved in [8], to Hk(n, p):
Consider bootstrap percolation with infection threshold r on G(n, p), where
n−1 � p � n−1/r. There is a threshold br = br(n, p) such that if |Ar(0)| ≤
(1−ε)br, then with probability tending to one as n → ∞ (whp for short) only
a few additional vertices become infected, while if |Ar(0)| ≥ (1 + ε)br, then
whp almost every vertex in the process becomes infected. For integers k ≥ 2
and r > 1 set

bk,r := bk,r(n, p) =
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⎪⎪⎩

(
1− 1

r

)( (r−1)!
n(( n

k−2)p)
r

)1/(r−1)
if r > 2

1
2(2k−3)

1

n(( n
k−2)p)

2 if r = 2,

and note that the only difference for the r = 2 case is a 1/(2k− 3) multiplier.
Since 2k−3 = 1 when k = 2 this is consistent with the threshold in the graph
case i.e. b2,r = br.

Theorem 2.1 For k ≥ 2 consider bootstrap percolation with infection thresh-
old r > 1 on Hk(n, p) when n−1 � nk−2p � n−1/r. Assume the initial in-
fection set is chosen uniformly at random from all sets of vertices of size
a = a(n). Then for any fixed ε > 0 we have that

• if a ≤ (1− ε)bk,r then whp |Ar(T )| = O(bk,r);

• if a ≥ (1 + ε)bk,r then whp |Ar(T )| = (1 + o(1))n.



Using the methods developed for this result we also obtain a strengthened
form of the result for G(n, p) establishing exponentially small bounds on the
failure probability.

Theorem 2.2 Consider bootstrap percolation with infection threshold r > 1
on G(n, p) when n−1 � p � n−1/r. Assume the initial infection set is chosen
uniformly at random from the set of vertices of size a = a(n). Then for any
fixed ε > 0 the following holds with probability 1− exp(−Ω(b2,r)):

• if a ≤ (1− ε)b2,r, then |Ar(T )| = O(b2,r);

• if a ≥ (1 + ε)b2,r, then |Ar(T )| = (1 + o(1))n.

The proofs rely on surprisingly simple methods. When the number of
vertices infected in the individual rounds is large, we apply Chebyshev’s or
Chernoff’s inequality. However when the process dies out, these changes can
become arbitrarily small. In this case we couple the infection process with a
subcritical branching process which dies out very quickly.

3 Proof outlines

We first show the outline for the proof of Theorem 2.1. For brevity we will
only describe the r > 2 case in detail and comment on the differences for r = 2
at the end.

Start with a given set of initially infected vertices Ar(0) and consider the
infection process round by round. At the end of round t ≥ 1 we partition
the set of vertices into A0(t),A1(t), ...,Ar(t) where the set Ai(t) consists of
all the vertices which have exactly i infected neighbours (these are vertices in
Ar(t− 1)), for i < r, and Ar(t) consists of all the vertices which have at least
r infected neighbours.

For every 0 ≤ i ≤ r we aim to define a sequence {ai(t)}t≥0 in such a way
that |Ai(t)| ≈ ai(t). We use the following initial values for the sequences
a0(0) = n, ar(0) = a, and ai(0) = 0 for 0 < i < r.

As long as |Ar(t)| = o
((

nk−2p
)−1)

the expected number of infected neigh-

bours of a vertex is o(1) and thus the typical vertex that becomes infected in
this round has exactly r infected neighbours in r different edges. In round
t+ 1 we determine for any uninfected vertex v ∈ V \Ar(t) whether it changes
its partition class. Note that this only happens if it has at least one neighbour
which became infected in round t. Therefore, for 0 < i ≤ r, the expected
change |Ai(t+1)\Ai(t)| of the size of the partition class can be approximated



by

ai(t+ 1)− ai(t) ≈
i∑

j=1

(
(ar(t)− ar(t− 1))j
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ai−j(t)

)((
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)
p

)i−j
, (1)

ignoring any negative terms (which correspond to vertices leaving their parti-
tion class). Similarly we assume that the number of vertices without infected
neighbours does not change significantly, i.e. a0(t+ 1) = a0(t) = n. From (1)
we deduce

ai(t+ 1) ≈ ar(t)
i

i!
n

((
n

k − 2

)
p

)i

+ ai(0), (2)

for 0 < i ≤ r. The behaviour of the sequence depends on the size a =
|Ar(0)| of the initial set. We will show the following: in the subcritical regime,
characterised by a ≤ (1− ε)bk,r, the sequence {ar(t)}t≥0 converges to a value
a∗ = O(bk,r) as t → ∞. On the other hand, in the supercritical regime,
a ≥ (1 + ε)bk,r, the sequence {ar(t)}t≥0 tends to infinity as t → ∞.

First consider the subcritical regime. Since in this case ar(t) converges we
have that the differences Δ(t) := ar(t+1)−ar(t) form a decreasing function in
t and show that, for any fixed η > 0, there exists a τ , which does not depend
on n, such that Δ(τ) ≤ ηbk,r. The fact that |Ai(t)| is concentrated around
ai(t) for t < τ follows from Chebyshev’s inequality.

Since we are in the subcritical regime the size of the individual generations
will become small and the concentration will fail. In order to avoid this we
attempt to analyse the remaining steps together. Consider the forest where
every vertex in Ar(τ + 1)\Ar(τ) is a root. Recall that in order for a vertex
to become infected in round t+ 1 it must have a neighbour that got infected
in round t. The children of a vertex v ∈ Ar(t + 1)\Ar(t) will be the vertices
u ∈ Ar(t + 2)\Ar(t + 1) which lie in an edge containing v and should this
relation not be unique for some vertex u, u is assigned arbitrarily to one of
the candidates. Clearly every vertex of Ar(T )\Ar(τ) is contained in the forest
and thus the size of this forest matches the number vertices which got infected
after round τ .

Note that for every δ > 0 there exists a t0 such that |Ai(t)| ≤ (1+ δ)ai(τ),
for every 0 ≤ i ≤ r and τ < t ≤ t0. Also up until time t0+1 we have an upper
coupling by a Galton-Watson branching process with |Ar(τ +1)\Ar(τ)| roots
and offspring distribution

∑r−1
j=0 Bin((1 + δ)ar−j(τ), qj) where

qj =

(
n
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)
p
(δar(τ))

j−1
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p

)r−j−1
.



For small enough δ the expected number of offspring in one step is∑r−1
j=0(1 + δ)ar−j(τ)qj < 1 and therefore this is a subcritical process, i.e. it

dies out with probability 1. For every t we have that |Ar(t)| ≤ (1 + δ)ar(τ)
implies |Ai(t + 1)| ≤ (1 + δ)ai(τ), for all 0 ≤ i < r, by (2), and thus it is
enough to show that |Ar(T )| ≤ (1 + δ)ar(τ). Due to the upper coupling with
the branching process we have that the probability that |Ar(T )| > (1+δ)ar(τ)
is dominated by the probability that the total size of the branching process
exceeds δar(τ). However for properly chosen η, δ > 0 the probability that the
total size of the branching process exceeds δar(τ) is sufficiently small. There-
fore we have that there are at most (1 + δ)ar(τ) infected vertices in total.

Now for the supercritical case. Recall that (1) and (2) hold when ar =

o
((

nk−2p
)−1)

. Again we consider the differences Δ(t) = ar(t + 1) − ar(t).

Although at the beginning of the process the values of Δ(t) decrease there
exists a value t1 not depending on n such that for every t > t1 we have that
Δ(t+1) > Δ(t). In fact there exists a t2 not depending on n such that for t ≥ t2
we have that Δ(t+1) > 2Δ(t). Therefore the probability of non-concentration
is dominated by a geometric sequence and applying the union bound gives us

concentration as long as ar(t) = o
((

nk−2p
)−1)

. When ar(t) = Ω
((

nk−2p
)−1)

the expected number of neighbours is Ω(1) and thus our approximation in (1)
does not hold any more. Refining these approximations shows that at most
2 rounds are required for almost every vertex to become infected, with Θ(n)
vertices becoming infected in every required step.

Recall that for r > 2 the typical vertex became infected when it was
contained in r different edges each containing a different infected vertex. When
r = 2 this is equivalent to finding two intersecting edges each containing a
different infected vertex. However unlike the r > 2 case finding two such
edges in step t implies that every vertex in these edges is infected by step
t+ 1. Two intersecting edges typically overlap in exactly one vertex and thus
finding such an edge pair implies that 2k − 3 vertices will become infected,
not just one. Taking this into account gives us the modified bound on the
threshold.

The proof of Theorem 2.2 is analogous. In the random graph case, in round
t of the process only those edges are examined which contain exactly one vertex
from A(t)\A(t−1) and no vertices from A(t−1). Since each of these edges can
contain at most one uninfected vertex the behaviour of the individual vertices
is independent. Thus we can replace Chebyshev’s inequality with Chernoff’s
inequality and achieve a stronger bound on the failure probability.
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