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Abstract

A P�-decomposition of a graph G is a set of pairwise edge-disjoint paths of G
with � edges that cover the edge set of G. Kotzig (1957) proved that a 3-regular
graph admits a P3-decomposition if and only if it contains a perfect matching, and
also asked what are the necessary and sufficient conditions for an �-regular graph to
admit a P�-decomposition, for odd �. Let g, � and m be positive integers with g ≥ 3.
We prove that, (i) if � is odd and m > 2�(� − 2)/(g − 2)�, then every m�-regular
graph with girth at least g that contains an m-factor admits a P�-decomposition;
(ii) if m > �(� − 2)/(g − 2)�, then every 2m�-regular graph with girth at least g
admits a P�-decomposition.
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1 Introduction

A set D = {H1, . . . , Hk} of pairwise edge-disjoint subgraphs of a graph G is
called a decomposition of G if these subgraphs cover the edge set of G. If
Hi, for 1 ≤ i ≤ k, is isomorphic to a graph H, then we say that D is an
H-decomposition of G. When H is a path of length 2, it is easy to prove that
a connected graph G admits an H-decomposition if and only if G has an even
number of edges. On the other hand, Dor and Tarsi [9] proved that decid-
ing whether a graph admits an H-decomposition is an NP-complete problem
whenever H has a component with at least 3 edges. It is then natural to look
for sufficient conditions for a graph G to admit an H-decomposition. When
H is a tree, Barát and Thomassen [1] conjectured that high edge-connectivity
(together with the obvious divisibility condition on the number of edges) may
suffice. In this paper we focus on the special case where G is an �-regular
graph, and H is a path of length � (� edges), which we denote by P�.

Kotzig [16] and also Bouchet and Fouquet [6] independently proved that a
3-regular graph admits a P3-decomposition if and only if it contains a perfect
matching. Kotzig asked what are the necessary and sufficient conditions for
an odd �-regular graph G to be decomposable into paths of length �. A nec-
essary condition is that G admits a decomposition into an

(
(�− 1)/2

)
-factor

and an
(
(� + 1)/2

)
-factor. Favaron, Genest, and Kouider [10] proved that

this condition is not sufficient, and conjectured that the existence of a perfect
matching may suffice for � ≥ 5. Favaron, Genest, and Kouider [10] proved
that it is sufficient for a 5-regular to contain a perfect matching and no cycles
of length four to admit a P5-decomposition. More recently, it was proved [5]
that every triangle-free 5-regular graph containing a perfect matching admits
a P5-decomposition. Many surveys and books on graph decompositions have
appeared in the literature [2,7,11,12]. In what follows we will restrict our at-
tention to decompositions of regular graphs. In [14] it is proved that every
4-regular bipartite graph admits a P4-decomposition. For other results con-
cerning 2k-regular graphs and cartesian product of regular graphs, the reader
is referred to [15,18]; and for results on decompositions of regular graphs with
large girth, we mention Kouider and Lonc [17].

Let D be a decomposition of a graph G into paths. Given a vertex v of
G, we denote by D(v) the number of elements of D containing v as an end-
vertex. We say that D is balanced if D(u) = D(v) for every u, v ∈ V (G).
Heinrich, Liu and Yu [13] proved that if G is a 3m-regular graph that contains
an m-factor, then G admits a balanced P3-decomposition. Our main contri-
butions (Theorems 3.2 and 3.4) are as follows. Let g, � and m be positive



integers with g ≥ 3. (i) If � is odd and m > 2�(�− 2)/(g − 2)�, then every
m�-regular graph with girth at least g that contains an m-factor admits a bal-
anced P�-decomposition. (ii) If m > �(�− 2)/(g− 2)�, then every 2m�-regular
graph with girth at least g admits a balanced P�-decomposition.

Our proofs require a generalization of the technique used by the authors
in [4]. Owing to space limitation, we present only sketches of some of the
proofs. The basic terminology and notation used in this paper are standard
(see, e.g. [8]).

2 The Disentangling Lemma

We present three lemmas that together form the central part of the proof
of our main result. Among them, Lemma 2.3, which we call Disentangling
Lemma, is the most important result in the proof of our main results. We
first introduce some definitions and establish the notation. A path P in G is
a sequence of distinct vertices P = v0v1 · · · v� such that vivi+1 ∈ E(G), for
i = 0, 1, . . . , �−1. The vertices v0 and v� are the end-vertices of P . The length
of P is the number of its edges. Sometimes, it is convenient to consider that
a path P = v0v1 · · · v� is the subgraph of G induced by the edges vivi+1 for
i = 0, . . . , �− 1. A vanilla trail is a trail T = v0v1 · · · v� such that v1 · · · v�−1 is
a path. A vanilla �-trail is a vanilla trail of length �.

Let D be a decomposition of a graph G into trails. Let v be a vertex of G
and let uv ∈ E(G) and T ∈ D be such that uv ∈ E(T ). If T = x0x1 · · · x� with
x0 = u and x1 = v, we say that uv is a pre-hanging edge of D at v. We denote
by preHang(v,D) the number of pre-hanging edges of D at v. We say that D is
k-pre-complete if preHang(v,D) > k, for all v in V (G). If dT (u) = 1, then we
say that uv is a hanging edge of D at v. We denote by Hang(v,D) the number
of hanging edges of D at v. We say that D is k-complete if Hang(v,D) > k,
for all v in V (G).

Let D be a decomposition of a graph G into trails. We extend to trails
the definition of D(v) given in Section 1 for paths. Given a vertex v of G, we
denote by D(v) the number of elements of D that have v as an end-vertex.
If an element T of D is such that v is the end-vertex of T , then we count
T twice (or with multiplicity 2) in D(v). Analogously, we say that D is
balanced if D(u) = D(v) for every u, v ∈ V (G). Lemma 2.1 shows how to
obtain a balanced complete vanilla �-trail decomposition from some balanced
pre-complete vanilla �-trail decomposition.

Lemma 2.1 Let g, k, �, r be positive integers with g ≥ 3 and let G be a graph



with girth at least g. If r ≥ �(� − 2)/(g − 2)� and G admits a balanced
(k+r)-pre-complete vanilla �-trail decomposition D, then G admits a balanced
k-complete vanilla �-trail decomposition D′.
Proof Let D be a balanced (k+r)-pre-complete vanilla �-trail decomposition
of G that maximizes

∑
v∈V (G) Hang(v,D). We claim that D is k-complete, i.e,

Hang(v,D) > k for each vertex v of G.

Suppose, by contradiction, that D is not k-complete. Then there is a
vertex v of G such that Hang(v,D) ≤ k. Since D is (k + r)-pre-complete,
preHang(v,D) ≥ k + r + 1. Thus, there are at least r + 1 pre-hanging edges
at v that are not hanging edges at v, say x1v, . . . , xr+1v. Let T1 = y0y1 · · · y�
be the element of D that contains x1v, where y0 = x1 and y1 = v and let
X = {x1, . . . , xr+1}. Let x′1, . . . , x

′
s be the vertices of X contained in V (T1),

ordered by distance from y1 in T1 − y0y1. Let l0 be the distance from y1 to
x′1 in T1, and let li be the distance from x′i to x′i+1 in T1, for 0 < i ≤ s − 1.
Since the girth of G is at least g, we have l0 ≥ g − 1, and li ≥ g − 2 for
1 ≤ i ≤ s − 1. Since x′1, . . . , x

′
s are ordered by distance from y1 in T1 − y0y1,

we have � − 1 ≥ ∑s−1
i=0 li ≥ g − 1 + (s − 1)(g − 2) = s(g − 2) + 1. Therefore,

s ≤ (� − 2)/(g − 2), which implies s ≤ r. Since |X| = r + 1 > s, there is at
least one vertex in X, say xp, that is not a vertex of T1.

Let Tp be the element of D that contains xpv. Let T ′1 = T1 − x1v + xpv
and T ′p = Tp − xpv + x1v, and let D′ = D − T1 − Tp + T ′1 + T ′p. It
is not hard to check that D′ is balanced. Since xp /∈ V (T1), we have
dT ′

1
(xp) = 1, which implies that xpv is a hanging edge of D′ at v. Therefore,∑
v∈V (G) Hang(v,D′) >

∑
v∈V (G) Hang(v,D), a contradiction to the maximal-

ity of
∑

v∈V (G) Hang(v,D). �

The next result is an essential tool in the proof of Lemma 2.3.

Lemma 2.2 Let � and g be positive integers such that g ≥ 3 and let G be
a graph with girth at least g. Let D be a decomposition of G. Let T be a
trail of length � in G, and let v be an internal vertex of T . If Hang(v,D) >
�(�−2)/(g−2)�, then there is a hanging edge uv of D at v such that u /∈ V (T ).

Proof We start by splitting T at v, obtaining two trails T1, T2 of length �1
and �2, respectively. Let x1v, . . . , xk+1v be distinct hanging edges at v. Put
X = {x1, . . . , xk+1}. Denote by s1 the number of vertices of X in T1. Let
x′1, . . . , x

′
s1

be the vertices of X contained in V (T1), ordered by distance from
v in T1.

Suppose s1 ≥ 1. Let l0 be the distance in T1 from v to x′1, and li be
the distance in T1 from x′i to x′i+1, for i > 0. Since G has girth at least g,



we have l0 ≥ g − 1, and li ≥ g − 2 for 1 ≤ i ≤ s1 − 1. Therefore, �1 ≥∑s−1
i=0 li ≥ g − 1 + (s1 − 1)(g − 2) = s1(g − 2) + 1. Defining s2 (with respect

to T2) analogously to s1, we obtain that if s2 ≥ 1, then �2 ≥ s2(g − 2) + 1.
Therefore, if s1, s2 ≥ 1, we have s1 + s2 ≤ (� − 2)/(g − 2). Now suppose
s1 = 0. Since v is an internal vertex of T , we have �− 1 ≥ �2 ≥ s2(g − 2) + 1,
which implies that s1 + s2 = s2 ≤ (� − 2)/(g − 2). In both cases, we have
s1 + s2 ≤ �(�− 2)/(g − 2)� = k. Since |X| = k + 1 > s1 + s2, there is at least
one element u in X that is not contained in T . �

Now we are ready to state and give a sketch of the proof of the Disentan-
gling Lemma.

Lemma 2.3 (Disentangling Lemma) Let g and � be positive integers with
g ≥ 3 and let G be a graph of girth g. Let k ≥ �(�− 2)/(g − 2)�. If G admits
a balanced k-complete decomposition D into vanilla �-trails, then G admits a
balanced k-complete P�-decomposition .

Sketch of the proof. For every vanilla trail T in G, let τ(T ) be the number of
end-vertices of T that have degree greater than 1 in T . Let D∗ be a balanced
k-complete decomposition into vanilla �-trails that minimizes

∑
T∈D τ(T ).

Suppose that there is a vanilla trail T0 in D∗ that is not a path. Let x be
an end-vertex of T0 of degree greater than 1 in T0, and let C be a cycle in T0

that contains x. Let y be a neighbour of x in C. By Lemma 2.2, there is a
hanging edge uy of D∗ at y such that u /∈ V (T0). Let T1 be the element of D∗
that contains uy. Now, let T ′0 = T0 − xy + uy, T ′1 = T1 − uy + xy, and put
D′ = D∗ − T0 − T1 + T ′0 + T ′1. Note that D′(v) = D∗(v) for every v in V (G),
and τ(T ′0) = τ(T0) − 1. If τ(T ′1) ≤ τ(T1), then D′ is a balanced k-complete
decomposition of G into vanilla �-trails such that

∑
T∈D′ τ(T ) <

∑
T∈D∗ τ(T ).

Otherwise, we would have τ(T ′1) = τ(T1) + 1 and T ′1 contains a cycle C ′ that
contains xy. Let y′ be a neighbour of x in C ′ such that y′ �= y. Now, repeat
the above operation, as long as necessary, considering T ′1 and y′ instead of T0

and y. We can show that such a procedure halts, and we obtain the desired
decomposition, concluding the proof.

3 Main results

In this section we show how to use Petersen’s Factorization Theorem to obtain
some complete decomposition of a graph G into vanilla �-trails. Then, we use
Lemma 2.3 to obtain a decomposition into paths of length �. Theorem 3.1
guarantees that the statement of the Theorem 3.2 holds for � = 3, while
Proposition 3.3 guarantees that the statement of Theorem 3.4 holds for � = 2.



Theorem 3.1 (Heinrich–Liu–Yu [13]) If G is a 3m-regular graph that
contains an m-factor, then G admits a balanced P3-decomposition.

Theorem 3.2 Let �, g and m be positive integers such that � is odd and g ≥ 3,
and let G be an m�-regular graph with girth at least g that contains an m-
factor. If m > 2�(�− 2)/(g− 2)�, then G admits a balanced P�-decomposition.

Proof Suppose the statement is false, and let � be the smallest integer such
that the statement is not true. By Theorem 3.1, the statement is true for
� = 3 and g ≥ 3. Thus, we may assume that � ≥ 5.

Let M be an m-factor of G. By Petersen’s Theorem, G−E(M) admits a
2-factorization {F1, . . . , F(�−1)m/2}. Let H be the union of m of these factors,
i.e, H is a 2m-factor of G. Then G′ = G− E(H) is a (�− 2)m-regular graph
with girth at least g. Note that, m ≥ 2�(�− 2)/(g− 2)� > 2�(�− 4)/(g− 2)�.
Thus, by the minimality of �, G′ admits a balanced decomposition D′ into
paths of length �− 2.

We claim that D′(v) = m for every vertex v in V (G). Let |V (G)| = n.
Note that G′ contains n(�−2)m/2 edges, hence D′ contains nm/2 paths. Thus∑

v∈V (G)D′(v) = nm. Since D′ is balanced, we have ∑
v∈V (G)D′(v) = nD′(u),

for every u in V (G). Therefore, D′(v) = m for every vertex v of G. Choose
an Eulerian orientation for H. Note that d+H(v) = m = D′(v). Thus, we
can extend each path P ′ of D′ to a vanilla �-trail T by adding to P ′ one
edge of H at each of its end-vertices. Let D be the decomposition obtained.
Note that D(v) = d−H(v) = m for every vertex v in V (G), because H has an
Eulerian orientation. Therefore, D is balanced. Put r = �(� − 2)/(g − 2)�
and k = m − r − 1. Note that k ≥ �(� − 2)/(g − 2)�. By the definition
of pre-hanging edge, the edges of H that leave a fixed vertex v of G are
precisely the pre-hanging edges of D at v; hence, D is (m − 1)-pre-complete.
By Lemma 2.1 applied with g, k, �, and r, the graph G admits a balanced
k-complete decomposition D′′ into vanilla �-trails. Since k ≥ �(�−2)/(g−2)�,
by Lemma 2.3, G admits a balanced k-complete P�-decomposition. �

The proof of Theorem 3.4 is similar to the proof of Theorem 3.2, and uses
Proposition 3.3 instead of Theorem 3.1.

Proposition 3.3 If G is a 4m-regular graph, then G admits a balanced P2-
decomposition.

Proof Consider an Eulerian orientation of G. Since G is 4m-regular, we
have d+(v) = d−(v) = 2m for every v ∈ V (G). For each vertex v of G,
decompose the set of edges corresponding to the directed edges that leave v



into m paths of length 2. Let D be the obtained decomposition, and note that
D(v) = d−(v) = 2m for every vertex v of V (G). �

Theorem 3.4 Let �, g and m be positive integers such that g ≥ 3 and let G
be a 2m�-regular graph with girth at least g. If m > �(�− 2)/(g − 2)�, then G
admits a balanced P�-decomposition.

4 Concluding remarks

We believe that the Disentangling Lemma (Lemma 2.3) can be used to obtain
other decomposition results. In fact, in a forthcoming paper [3], we use a ver-
sion of the Disentangling Lemma for bipartite graphs to prove that, for every
positive integer �, there exists a constant k = k(�), such that if G is k-edge
connected and � divides |E(G)|, then G admits a P�-decomposition. This re-
sult solves for path decomposition the Conjecture of Barát and Thomassen [1]
on tree decomposition.

For the special case of Theorem 3.2, in which g = � − 1, we use a gener-
alization of the techniques in [5] to prove that the following holds for odd �:
Every �-regular graph with girth �−1 that contains a perfect matching admits
a P�-decomposition.
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