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Abstract

Miklavič and Milanič (2011) introduced the connections among the classes of eq-
uistable, general partition and triangle graphs. We present results concerning the
three classes aforementioned. In particular, we show that the general partition and
triangle classes are both closed under the operations of substitution, induction and
contraction of modules. Moreover, we show that the triangle condition is sufficient
for a planar graph to be a general partition graph, providing a generalisation of a
result by Mahadev, Peled and Sun (1994) on equistable outerplanar graphs.
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1 Introduction

We consider finite simple undirected graphs and follow notations and defini-
tions from Bondy and Murty [2].

The following chain of graph classes inclusions was shown by Miklavič and
Milanič [7]:

general partition graphs ⊆ equistable graphs ⊂ triangle graphs.

Refuting a conjecture by Orlin (cf. Levit and Milanič [4]), Milanič and
Trotignon [8] showed that the class of general partition graphs is properly
contained in the class of equistable graphs, strengthening the above chain to:

general partition graphs ⊂ equistable graphs ⊂ triangle graphs.

A graph G = (V,E) is a general partition graph if there exists a set U and
an assignment of a nonempty subset Uv ⊆ U to each vertex v of G such that
two vertices u and v are adjacent if and only if Uu ∩ Uv �= ∅, and for every
maximal independent set S of G, U =

⋃
v∈S Uv.

A clique in a graph is a strong clique if it has non-empty intersection with
each maximal independent set of the graph. Moreover, a collection of cliques
is a clique cover of G if for every edge of G there is a clique in the collection
that contains both its endpoints. Finally, a clique cover is a strong clique cover
if all of its cliques are strong cliques.

Theorem 1.1 (McAvaney et al. [6]) A graph G is a general partition graph
if and only if there is a strong clique cover of G.

A graph G satisfies the triangle condition if for every maximal independent
set S and every edge uv in G \ S there is a vertex s ∈ S such that {u, v, s}
induces a triangle in G. A graph is a triangle graph if it satisfies the triangle
condition.

An induced P4 abcd in a graph G is a bad P4 if there exists a maximal
independent set S in G containing both a and d such that no vertex in S is
simultaneously adjacent to b and c. Such a maximal independent set S is a
witness for the bad P4.

Theorem 1.2 ( Miklavič and Milanič [7]) A graph G is a triangle graph
if and only if G contains no bad P4.

In this work, we show that the general partition and triangle classes of
graphs are both closed under the operations of substitution, induction and
contraction of modules (the definitions are in the next section), which allows
us to get as corollaries results by McAvaney et al. [6] and the lexicographic



product result by Miklavič and Milanič [7]. As a further result we show that
for planar graphs the triangle condition is sufficient for a graph to be a general
partition graph, answering a question rised by Anbeek et al. [1].

2 Module operations

Let G be a graph and U ⊆ V (G). A vertex x /∈ U distinguishes U if x has
both a neighbour and a non-neighbour in U . A subset of vertices of G is a
module if it is indistinguishable by the vertices that do not belong to it.

Next result warrants that the general partition and triangle classes of
graphs are both closed under the operations of induction by a module and
contraction of modules.

Theorem 2.1 Let G be a general partition (triangle) graph, and let M be a
module of G. Then, the graph induced by M is a general partition (triangle)
graph. Furthermore, the graph obtained from G by replacing M with a single
vertex adjacent to the neighbours of M is a general partition (triangle) graph.

Proof. Consider G a general partition graph, M a module of G and C a
strong clique cover of G. Notice that any strong clique cannot be entirely
contained in M . So, we claim that C′ = {C ∩ M | C ∈ C} is a clique cover
of G[M ]. Suppose there exists C ′ ∈ C ′ such that C ′ is not a strong clique
in G[M ]. This means that there is a maximal independent set S ′ in G[M ]
such that C ′ ∩ S ′ = ∅. Now, take C ∈ C such that C ′ ⊂ C and extend S ′ to
a maximal independent set S in G. Because S ′ has some vertices of M , no
vertex adjacent to some vertex of M is in S. So, C ∩ S = ∅, contradicting
that C is a strong clique of G. Therefore, G[M ] is a general partition graph.

Let G′ be the graph obtained by the contraction ofM into a single vertex v.
It is easy to see that C ′ = {C | C∩M = ∅ and C ∈ C}∪{C\M∪{v} | C∩M �= ∅
and C ∈ C} is a strong clique cover of G′, proving that G′ is a general partition
graph.

Suppose G is a triangle graph and let P be a bad P4 in G[M ] having SM

as a witness. Consider S a maximal independent set of G such that SM ⊂ S.
Since S \ SM cannot have any vertex adjacent to some vertex in M , we have
that P is also a bad P4 in G having S as a witness, a contradiction.

It is not hard to see that the existence of a bad P4 in the graph obtained
by the contraction of M into a single vertex v implies the existence of a bad
P4 in G. �

Let G1 and G2 be disjoint graphs and u be a vertex of G1. Define G =



G1(u → G2) as the graph such that V (G) = V (G1)\{u}∪V (G2) and E(G) =
E(G1−u)∪E(G2)∪E ′ where v1v2 ∈ E ′ if and only if v1 ∈ V (G1)∩N(u) and
v2 ∈ V (G2).

Next result warrants that the general partition and triangle classes of
graphs are both closed under the operation of substitution.

Theorem 2.2 Let G1 and G2 be disjoint graphs, and u be a vertex of G1.
Then G1 and G2 are general partition (triangle) graphs if and only if G1(u →
G2) is a general partition (triangle) graph.

Proof. Let G = G1(u → G2) and G2 = (V2, E2). Notice that V2 is a module
of G and G1 can be obtained from G by replacing V2 with a single vertex
adjacent to the neighbors of V2. Therefore, by Theorem 2.1, if G is a general
partition (triangle) graph, then also are both G1 and G2.

Given a graph H, denote respectively by SH and CH , the set of all maximal
independent sets and the set of all maximal cliques of H. Notice that by the
construction of G, we have SG = {S1 | u �∈ S1 and S1 ∈ SG1} ∪ {S1 \ {u} ∪
S2 | u ∈ S1, S1 ∈ SG1 and S2 ∈ SG2}. Moreover, CG = {C1 | u �∈ C1 and
C1 ∈ CG1} ∪ {C1 \ {u} ∪ C2 | u ∈ C1, C1 ∈ CG1 , C2 ∈ CG2}.

Let G1 and G2 be general partition graphs with C1 and C2 its strong clique
covers, respectively. Because of the construction of SG and CG, we have that
C={C1 | u �∈ C1, C1 ∈ C1} ∪ {C1 \ {u} ∪ C2 | u ∈ C1, C1 ∈ C1 and C2 ∈ C2} is
a strong clique cover of G. Therefore, G is a general partition graph.

Suppose G1 and G2 are triangle graphs and consider G = G1(u → G2).
Since V2 is a module of G, the vertices of any induced P4 in G, with some
vertex v in V2, are either entirely contained in V2 or v is an end-point of the
P4 and it is the only vertex of the P4 in V2. Therefore, any induced P4 in G
can be seen as an induced P4 in either G1 or G2. Now, let P be a bad P4 in
G and let S be a witness for it. If the vertices of P are contained in V2, then
P is a bad P4 in G2 having S2 = S ∩ V2 as its witness. If the intersection
of the vertices of P with V2 contains only v, then switch v for u in P and
S \ V2 ∪ {u} is a witness for the new bad P4 in G1. At last, if the vertices of
P are contained in V1, then either S or S \ V2 ∪ {u} is a witness for P being
a bad P4 in G1. �

3 Planar graphs

A graph G is planar if it has a planar representation with no crossing edges.
In this section we show that the triangle condition is sufficient to a planar
graph be a general partition graph.



Theorem 3.1 (Kuratowski [2]) A graph G is planar if and only if G con-
tains no subdivision of K5 or K3,3.

Theorem 3.2 Let G be a planar graph satisfying the triangle condition. Then,
G is a general partition graph.

Proof. Suppose G is not a general partition graph. Then, there exists an
edge xy ∈ E(G) such that every maximal clique containing {x, y} is not a
strong clique.

Let t = |N(x)∩N(y)|. Consider a planar representation of G in which xy
is in the outer face and name the vertices in N(x) ∩ N(y) by v1, . . . , vt, in a
manner that the vertices in {v1, . . . , vj−1} are inside the region defined by the
cycle xyvj, 1 < j ≤ t.

Notice that in this planar representation of G, the neighbourhood of vj,
1 < j < t, can only be found in the interior of the closed regions defined by
the cycles xvj−1yvj and xvjyvj+1.

Let C1, C2, . . . , Ck be the maximal cliques containing {x, y}. Due to the
labeling of the shared neighbourhood of x and y, if |Ci| = 3, then Ci =
{x, y, vj} for some j in {1, . . . , t}. And if |Ci| = 4, then Ci = {x, y, vj, vj+1},
1 ≤ j < t.

Since Ci is not a strong clique, there is a maximal independent S such that
Ci∩S = ∅. Moreover, S has vertices ai and bi such that ai is adjacent to both
x and vj, and bi is adjacent to both vj and y. Notice that if Ci has size 3, then
ai and bi are necessarily different. Furthermore, when Ci has size 4, it follows
that S will also have a vertex mi adjacent to both vj and vj+1. Besides, if
there exists a vertex adjacent to both vj and ai that is different from x and
does not belong to N(x) ∩N(y), denote it by vai . Analogously, denote by vbi
a vertex adjacent to both vj and bi, different from y and all vj’s.

Proposition 3.3 There exists an independent set I in G satisfying the fol-
lowing properties:

(i) Every u ∈ I, is a ai, bi, mi, vai or vbi for some i in {1, . . . , k};
(ii) Each vj ∈ N(x) ∩N(y) has a neighbour in I;

(iii) For some 1 ≤ r, s ≤ k, the vertices ar, bs ∈ I;

(iv) I ∩N [x] ∩N [y] = ∅.
We omit the proof of this proposition.

Therefore, by extending such I to a maximal independent set I ′ of G, we
obtain a maximal independent set of G that is disjoint with all the cliques



containing both x and y. That means no vertex in I ′ is adjacent to both end
points of the edge xy, contradicting that G satisfies the triangular condition.�

Corollary 3.4 For a planar graph G, the following are equivalent:

(i) G is a triangle graph;

(ii) G is an equistable graph;

(iii) G is a general partition graph.

Since Kloks et al. [3] presented a polynomial-time algorithm that ver-
ifies if a planar graph satisfies the triangle condition, we have that trian-
gle/equistable/general partition graphs can be recognized in polynomial time.
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