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Abstract

An online Ramsey game (G, H) is a game between Builder and Painter, alternating
in turns. In each round Builder draws an edge and Painter colors it either red
or blue. Builder wins if after some round there is a monochromatic copy of the
graph H, otherwise Painter is the winner. The rule for Builder is that after each
his move the resulting graph must belong to the class of graphs G. In this abstract
we investigate the computational complexity of the related decision problem and
we show that it is PSPACE-complete. Moreover, we study a generalization of online
Ramsey game for hypergraphs and we provide a result showing that Builder wins
the online Ramsey game for the case when G and H are 3-uniform hyperforests and
H is 1-degenerate.
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1 Introduction

The online Ramsey game was introduced independently by Beck [1] and Fried-
gut et al. [4]. In this abstract we consider an extensions of the online Ramsey
game (G, H) introduced by Grytczuk et al. [5] as follows. We are given a class
of finite graphs G and a fixed graph H. There are two players, Builder and
Painter, and the board of the game is an infinite independent set of vertices.
In each round Builder draws a new edge and Painter colors it red or blue.
The goal of Builder is to force Painter to create a monochromatic copy of H.
However, in each round the graph induced by the edges must belong to G,
otherwise Builder loses. If Builder can always win the online Ramsey game
(G, H), we say that H is unavoidable on G. A graph class D is unavoidable
on C if every graph D ∈ D is unavoidable on C. The current graph during
the gameplay is also called background graph and the graph H is called goal
graph.

Let R(H) be a Ramsey graph of H, that means a graph such that any
two-coloring of its edges contains a monochromatic copy of H. If R(H) ∈ G
then H is trivially unavoidable on G. However, the question of unavoidability
is usually highly nontrivial when R(H) /∈ G. For example, for H = K4 and
G the class of all 4-colorable graphs, no Ramsey graph R(K4) belongs to G,
but still K4 is unavoidable on G by [5]. The online Ramsey theory is thus an
interesting member of the family of Ramsey-related problems.

Online Ramsey theory recently gained popularity and different versions of
the online Ramsey game were considered and several unavoidability results
were obtained. Grytczuk et al. [5] has shown that forests are unavoidable on
the class of all forests and that any k-colorable H is unavoidable on the class
of k-colorable graphs. Conlon [3] studied the differences between standard
Ramsey theory and the online theory. He proved that there is a constant c
such that for infinitely many values k Builder needs to draw less then c−k

(
r(k)
2

)

edges to force Kk on the infinite complete background graph, where r(k) is the
standard Ramsey number for complete graphs. Petř́ıčková [7] showed that the
class of outerplanar graphs is unavoidable on the class of planar graphs. But-
terfield et al. [2] presented several unavoidability results for graphs on the class
of bounded-degree graphs. Rolnick [8] provided a complete characterization
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of trees unavoidable on the class of graphs with maximum degree 4.

In the standard Ramsey theory setting, the following natural question
appeared: Given graphs F,G,H, what is the computational complexity of
deciding whether for any red-blue coloring of edges of F there is a red copy of
G or blue copy ofH in F? This problem was intensively studied by Schaefer [9]
who obtained several results. The most remarkable result of Schaefer is that
this standard Ramsey decision problem is Π2-complete.

Therefore, as online Ramsey theory is an important member of the fam-
ily of Ramsey-related problems, it is a natural question to investigate the
computational complexity of the decision version of the online Ramsey game
problem: Given a partially colored graph G and a graph H, does Builder win
the online Ramsey game (G,H)? We establish the computational complexity
of this problem to be PSPACE-complete, as shown in Section 2.

Moreover, another natural task is to generalize online Ramsey theory re-
sults for various hypergraph classes. As far as we known, very little has been
done in this field. Kierstead and Konjevod [6] studied Builder’s strategies for
complete hypergraphs. In Section 3 we provide a result showing that any 1-
degenerate 3-uniform hyperforestH is unavoidable on the class of all 3-uniform
hyperforests.

2 Complexity of the online Ramsey game

We first define the decision problem related to the online Ramsey game. Note
that the background graph is induced on an infinite vertex set and the class
G may be infinite as well. We have thus chosen the following way how to
deal with this issue. The input of the decision problem in fact consists of
two parts: the partially colored background graph and the goal graph, and
the rules. Rules are defined as an algorithm (given as a binary encoding of a
Turing machine, say) that is executed after every Builder’s and Painter’s move
to check, whether they follow the rules and the background graph belongs to
the class G.



Problem: Online Ramsey Game

Input: Partially edge-colored background graph G, goal graph H.

Rules: Rules for Builder and Painter—rules have to be indepen-
dent on the input and the decision problem if a move is
valid belongs to PSPACE (measured against the size of the
graph G).

Question: Can Builder force a monochromatic copy of H in G?

It is easy to see that this problem is in PSPACE regardless of the rules.
We may use a simple depth-first-search algorithm over the set of valid moves
such that in each position the algorithm iterates over all valid moves and
recursively searches each of the moves for a solution. The maximum depth of
the recursion is linear in the size of G.

Theorem 2.1 Online Ramsey Game is PSPACE-complete.

The fact that Online Ramsey Game is PSPACE-complete corresponds with
the complexity of many other decision problem regarding the existence of game
strategies. However, Online Ramsey Game is PSPACE-complete even for quite
simple inputs as we will state later. For simplicity, we show the idea of the
hardness proof of a slightly relaxed problem, which we call Multiple Online

Ramsey Game. It is based on Online Ramsey Game but the input also contains
an integer parameter m and the question is changed to: Can Builder force
m monochromatic copies of the goal graph H in the background graph G?
Individual copies of H do not have to be painted by the same color.

The following two-player Paired Formula Game played on propositional
formulas will be reduced to Online Ramsey Game. We are given a propositional
formula ϕ in CNF with variables x1, y1, x2, y2, . . . , xn, yn, which are organized
in pairs (x1, y1), . . . , (xn, yn). In each round the first player picks a previously
unpicked pair (xi, yi) and sets xi, then the seconds player sets yi. The game
ends when all variables are set. The first player wins if the formula ϕ is true
at the end of the game, otherwise the second player wins.

Theorem 2.2 The problem of deciding if the first player wins Paired Formula

Game is PSPACE-complete.

In the reduction we will use the following graph. The (n, a, b)-shackles is a
graph which contains two disjoint cycles Ca and Cb connected by a path Pn of
n edges that does not cross Ca and Cb (with the exception of the endpoints).
If n is even we call the center vertex of Pn the center of shackles. The edge



of Pn adjacent to Ca (or Cb) is called a-connection (or b-connection). See
Figure 1 for the illustration.

n edges

Fig. 1. Example of (n, 4, 6)-shackles with blue 4-connection and red 6-connection.

Theorem 2.3 Multiple Online Ramsey Game is PSPACE-complete.

Proof. [Idea of the proof] As we stated before, we reduce from Paired For-

mula Game. Let a formula ϕ and pairs of ϕ-variables (x1, y1), . . . , (xn, yn) be
the input for the formula game. The players of the formula game will be
addressed as the first and the second player, and the players of the online
Ramsey game will be addressed as Builder and Painter.

First, we describe the gadgets for variables. Let (x, y) be a variable pair.
For all occurrences x1, . . . , xk, y1, . . . , y� of variables x and y in ϕ we construct
a corresponding (4, 4, 6)-shackles. We add one more vertex connected to the
centers of all these shackles. See Figure 2 for an example, where it is also
depicted how we precolored these gadgets.

The idea of the equivalence proof of the formula game and Ramsey game is
as follows. If the first player sets variable x to 1 then in the corresponding gad-
get only 4-connections are drawn by Builder. If x = 0 then only 6-connections
are drawn. If the second player sets the variable y to 1 then the drawn edges
in the corresponding gadget are colored blue, and red for y = 0.

For consistency, we need to assure that in every gadget Builder picks edges
only of one connection type and Painter colors all drawn edges by one color.
We force it by two simple rules. Builder cannot pick an edge e such that the
graph induced by all colored edges with the edge e contains (4, 4, 6)-shackles
or (6, 4, 6)-shackles. Painter has to color the edges such that every (6, 4, 4)-
shackles or (6, 6, 6)-shackles in a graph induced by the colored edges contains
even number of red edges and even number of blue edges.

To finish the construction of the background graph G we add a red and
blue 8-cycle connected by one vertex for every clause of the formula ϕ and
connect them into the shackles from variable gadgets as depicted in Figure 2.

The goal graph H is defined as an 8-cycle with an attached path of 10
edges. We set the parameter m to be the number of clauses in ϕ. To finish
the proof we need to show that the first player wins Paired Formula Game

if and only if Builder wins Multiple Online Ramsey Game. We can simply



x1 ∈ C1

x11

¬x1 ∈ C2

x21

y1 ∈ C3

y11

¬y1 ∈ C4
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Clause
gadgets

Variable
pair gadget

P4 P4 P4 P4 P4 P4 P4 P4

Fig. 2. Example of clause gadgets and the gadget for variable pair (x, y) when both
variables (x, y) have two occurrences. Almost all edges are precolored, only 4- and
6-connections can be drawn by Builder. Every clause gadget is connected to the
variable gadget by a path of length 4.

convert the winning strategy of the first player (or the second player) to the
winning strategy of Builder (or Painter). When both games end, the clause C
in ϕ is true if and only if there is a monochromatic copy of H in the colored
G containing an 8-cycle from a gadget representing the clause C. �

Theorem 2.1 holds even for a bipartite background graph G with maximal
degree 3, a tree as the goal graph H, and when Painter has no rule and valid
Builder’s moves are determined only by a finite set of finite forbidden graphs.
Thus, valid Builder’s moves can be checked in polynomial time. In some sense,
this means Theorem 2.1 is optimal. If the background graph G has maximum
degree 2 then G is a disjoint union of cycles and paths. Therefore, Builder
can force a monochromatic path of length 2 if and only if he can build an
odd cycle, which is easy to compute since the rules only forbid a finite set of
graphs. Otherwise Builder can force only a monochromatic edge.

Rules for Builder are also important. If Builder has no rule restrictions, he
may eventually draw all edges of the background graph. Therefore, Builder
can win if and only if any edge 2-coloring of the background graph G contains
a monochromatic copy of the goal graph H. However, this is the problem
of classic Ramsey theory, which has been shown by Schaefer [9] to be Π2-
complete.

Even though Online Ramsey Game is PSPACE-complete in general, for a
more restricted version of the game we may obtain NP-completeness, as shown
in Theorem 2.5. By t-star we mean a complete bipartite graph K1,t.



Problem: Star Online Ramsey Game

Input: Background graph G, s, t ∈ N.

Rules: Builder can build a vertex disjoint union of stars.

Question: Can Builder force s copies of t-stars of the same color?

We obtain the following characterization of the Builder’s win in Star On-

line Ramsey Game.

Lemma 2.4 Builder wins Star Online Ramsey Game if and only if the back-
ground graph G contains 2s− 1 vertex disjoint 2t− 1-stars.

The problem if a graph G contains s vertex disjoint t-stars is in NP and
can be easily reduced to Independent Set. Therefore, we obtain the following
result.

Theorem 2.5 Star Online Ramsey Game is NP-complete.

3 Unavoidability of hypertrees

Grytczuk et al. [5] proved that forests are unavoidable on the class of all forests.
The natural question is thus to generalize this online Ramsey theory result
for hyperforests. Here we present a hypergraph class which is unavoidable on
3-uniform hyperforests.

Let H = (V, F ) be a hypergraph and G be a graph. Graph G is a host
graph for H if every hyperedge f ∈ F induces a connected subgraph in G.
The hypergraph H is a hyperforest if there exists a forest which is the host
graph of H.

Theorem 3.1 The 1-degenerate 3-uniform hyperforests are unavoidable on
3-uniform hyperforests.

The proof is done by induction over the edges. In the induction step we
remove the edge with the vertex of degree 1 and apply the induction hypoth-
esis. Also note that the goal hypergraph must be uniform in order to be
unavoidable; otherwise Painter could paint edges of different size by different
colors.

Further work

So far we have not been able to generalize Theorem 3.1 for general k-uniform
hypertrees, which is thus our next effort. The online Ramsey theory for hyper-



graphs is a field with almost no results and we feel there is a lot of potential
for future research. Also, the generalization of the online Ramsey theory for
more colors than two seems to be surprisingly hard in many cases.
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