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Abstract

Isotopisms of the set Rr,s,n of r × s partial Latin rectangles based on n symbols
constitute a finite group that acts on this set by permuting rows, columns and sym-
bols. The number of partial Latin rectangles preserved by this action only depends
on the conjugacy classes of these permutations. In this paper, the distribution of
the isotopism group into conjugacy classes is considered in order to determine the
distribution of Rr,s,n into isomorphism and isotopism classes, for all r, s, n ≤ 6.

Keywords: Partial Latin rectangle, autotopism group, conjugacy.

1 Supported by PAIDI Andalusian group FQM-016.
2 Email: rafalgan@us.es
3 Supported by her NSF China Research Fellowship for International Young Scientists
(grant number: 11450110409).
4 Email: rebecca.stones82@gmail.com

Available online at www.sciencedirect.com

www.elsevier.com/locate/endm

http://www.elsevier.com/locate/endm
http://www.sciencedirect.com


1 Introduction

An r × s partial Latin rectangle based on a set of n symbols is an r × s array
P = (pij) in which each cell is either empty or contains one element chosen
from a set of n symbols, such that each symbol occurs at most once in each
row and in each column. If r = s = n, then P is a partial Latin square of order
n. Hereafter, [n] = {1, . . . , n} is assumed to be this set of symbols and Rr,s,n

denotes the set of r× s partial Latin rectangles based on [n]. The size of P is
defined as the number of non-empty cells. Its orthogonal array representation
is the set O(P ) = {(i, j, pij) ∈ [r] × [s] × [n]}. If there does not exist empty
cells and s = n, then P is a Latin rectangle (a Latin square if r = s = n).

Let Sm denotes the symmetric group on m elements. The isotopism group
Sr×Ss×Sn constitutes a finite group that acts on the set Rr,s,n by permuting
rows, columns and symbols. Let Θ = (α, β, γ) ∈ Sr × Ss × Sn. It is defined
the isotopic partial Latin rectangle PΘ whose orthogonal array representation
is O(PΘ) = {(α(i), β(j), γ(pi,j)) : (i, j, pij) ∈ O(P )}. The triple Θ is said
to be an isotopism of Rr,s,n. If r = s = n and α = β = γ, then Θ is an
isomorphism. In this case, the symmetric group Sn is identified with the
isomorphism group of Rn,n,n. To be isotopic or isomorphic are equivalence
relations among partial Latin rectangles. The stabilizer groups of a partial
Latin rectangle by the respective actions of Sr ×Ss×Sn and Sn constitute its
autotopism and automorphism groups.

The enumeration and classification of partial Latin rectangles is an open
question. Even though the number of Latin rectangles in Rr,n,n is currently
known [8] for all r, n ≤ 11, the cardinality of the set Rr,s,n is only known
for r, s, n ≤ 4, which was recently been obtained [3,4] by identifying this
set with the affine variety defined by the zero-dimensional radical ideal of
polynomials Ir,s,n = 〈 xijk(xijk − 1), xijkxi′jk, xijkxij′k, xijkxijk′ : i ∈ [r], j ∈
[s], k ∈ [n], i′ ∈ {i + 1, . . . , r}, j′ ∈ {j + 1, . . . , s}, k′ ∈ {k + 1, . . . , n} 〉 ⊆
Z/2Z[x111, . . . , xrsn]. Particularly, every partial Latin rectangle P = (pij) ∈
Rr,s,n is uniquely identified with a point (a111, . . . , arsn) ∈ {0, 1}rsn, where
aijk = 1 if pij = k and 0, otherwise. The decomposition of the affine variety
V (Ir,s,n) into finitely many disjoint subsets, each of them being the zeros of
a triangular system of polynomials equations, makes possible to determine in
Section 2 the number of r× s partial Latin rectangles based on n symbols, for
all r, s, n ≤ 6.

Even though the distribution of Latin squares into isomorphism and iso-
topism classes has been determined [7,9] for order up to 11, it is only known
[1] the number of isotopism classes of those partial Latin squares P ∈ Rn,n,n of



order n ≤ 6 that are critical sets. This paper deals with the use of conjugacy
classes of isotopisms together with Burnside’s lemma in order to determine the
distribution of r × s partial Latin rectangles based on [n] into isomorphism
and isotopism classes, for all r, s, n ≤ 6.

2 Enumeration of Rr,s,n

Given a positive integer i ≤ r, let I
(i)
r,s,n be the subideal in Ir,s,n related to the

ith row of an r× s partial Latin rectangle based on [n], that is, I
(i)
r,s,n = 〈 x2

ijk−
xijk, xijkxij′k, xijkxijk′ : j, j′ ≤ s, k, k′ ≤ n, j < j ′, k < k′ 〉. Let {J1,1, . . . , J1,t}
be a finite set of subideals of I

(1)
r,s,n whose affine varieties constitute a partition of

the affine variety of the ideal I
(1)
r,s,n and which are generated by the polynomials

of t distinct triangular systems of polynomial equations. This finite set can be
obtained by applying the algorithm of Moeller and Hillebrand [6,10]. Given

l ≤ t and i ∈ {2, . . . , r}, let Ji,l be the subideal of I
(i)
r,s,n whose generators

coincide with those of the subideal J1,l after replacing the variable x1jk by
xijk, for all j ≤ s and k ≤ n. For each tuple (t1, . . . , tr) ∈ [t]r, let us define
the ideal Kt1,...,tr = J1,t1 + . . . + Jr,tr + J , where J = 〈 xijkxi′jk : i, i′ ≤ r, j ≤
s, k ≤ n, i < i′ 〉. The set of affine varieties {V (Kt1,...,tr) : (t1, . . . , tr) ∈ [t]r}
constitutes a partition of V (Ir,s,n), whose cardinalities have been explicitly
obtained for all r, s, n ≤ 6 by means of the set of Gröbner bases and Hilbert
functions of the corresponding ideals Kt1,...,tr . They coincide with the number
of r × s partial Latin rectangles based on [n] that are given in Table 1.

3 Distribution into isomorphism and isotopism classes

This section deals with the distribution of r× s partial Latin rectangles based
on [n] into isomorphism and isotopism classes. Due to conjugacy of rows,
columns and symbols, we focus on the case r ≤ s ≤ n. Let In and Ir,s,n

denote, respectively, the sets of isomorphism and isotopism classes of Rr,s,n

and Rn,n,n. The next result follows straightforward.

Lemma 3.1 Let r, s and n be three positive integers. If rs ≤ n, then |Ir,s,n| =
|Ir,s,rs|. Further, if s ≤ n, then |I1,s,n| = s+ 1. �

Similarly to (partial) Latin squares [2,3,11], the distribution of partial
Latin rectangles into isotopism and isomorphism classes can be determined
according to the conjugacy classes of Sr × Ss × Sn. In this regard, let RΘ

denote the set of r × s partial Latin rectangles based on [n] that have an



r s n |Rr,s,n|
1 1 1 2

2 3

3 4

4 5

5 6

6 7

2 2 7

3 13

4 21

5 31

6 43

3 3 34

4 73

5 136

6 229

4 4 209

5 501

6 1045

5 5 1546

r s n |Rr,s,n|
1 5 6 4051

6 6 13327

2 2 2 35

3 121

4 325

5 731

6 1447

3 3 781

4 3601

5 12781

6 37273

4 4 28353

5 162661

6 720181

5 5 1502171

6 10291951

6 6 108694843

3 3 3 11776

4 116425

r s n |Rr,s,n|
3 3 5 805366

6 4193269

4 4 2423521

5 33199561

6 317651473

5 5 890442316

6 15916515301

6 6 526905708889

4 4 4 127545137

5 4146833121

6 87136329169

5 5 313185347701

6 14554896138901

6 6 1474670894380885

5 5 5 64170718937006

6 7687297409633551

6 6 2322817844850428851

6 6 6 2027032853070203981647

Table 1
Number of r × s partial Latin rectangles based on [n], for all r ≤ s ≤ n ≤ 6.

isotopism Θ ∈ Sr × Ss × Sn in its autotopism group. The next result holds.

Lemma 3.2 Let Θ1 and Θ2 be two conjugate isotopisms in Sr × Ss × Sn. It
is verified that |RΘ1 | = |RΘ2 |. Further, the set of isotopism classes of RΘ1

coincides with that of RΘ2.

Proof. Let Θ3 ∈ Sr×Ss×Sn be such that Θ2 = Θ3Θ1Θ
−1
3 . The result follows

straightforward from the fact that RΘ2 = {PΘ3 : P ∈ RΘ1}. �

To be conjugate is an equivalence relation among isotopisms in which each
conjugacy class is characterized by the common cycle structure of its elements.
Recall that the cycle structure of a permutation π in the symmetric group Sm is
defined as the expression zπ = mdπm . . . 1d

π
1 , where dπi is the number of cycles of

length i in the unique cycle decomposition of the permutation π. In practice,
it is only written those terms id

π
i for which dπi > 0. The cycle structure of an

isotopism (α, β, γ) ∈ Sr×Ss×Sn is then defined as the triple (zα, zβ, zγ) formed
by the respective cycle structures of α, β and γ. Thus, for instance, the cycle
structure of the isotopism ((1234), (12)(3)(45), (12)(345)(6)) ∈ S4 × S5 × S6

is (4, 221, 321). Let CSm denote the set of cycle structures of the symmetric
group Sm. Given a cycle structure z ∈ CSm, let dzi denote the value of dπi
for all permutation π ∈ Sm of cycle structure z. Similarly to the case of
(partial) Latin squares [3,11], the next result describes the cycle structure of
any isotopism of Rr,s,n.



Lemma 3.3 A triple z = (z1, z2, z3) ∈ CSr ×CSs×CSn is the cycle structure
of an isotopism of a non-empty r × s partial Latin rectangle based on [n] if
and only if there exists a triple (i, j, k) ∈ [r] × [s] × [n] such that lcm(i, j) =
lcm(i, k) = lcm(j, k) = lcm(i, j, k) and dz1i · dz2j · dz3k > 0. �

Let Δ(z1, z2, z3) denote the cardinality of the set RΘ for any isotopism Θ of
cycle structure (z1, z2, z3) ∈ CSr ×CSs ×CSn. This can be used to determine
the distribution of partial Latin rectangles into isotopism and isomorphism
classes. Specifically, since the isotopism and the isomorphism groups are finite
groups that acts on Rr,s,n and Rn,n,n, respectively, Burnside’s lemma and the
number of permutations with a given cycle structure involve:

|Ir,s,n| =
∑

α∈Sr
β∈Ss
γ∈Sn

Δ(zα, zβ, zγ)

r!s!n!
=

∑

z1∈CSr
z2∈CSs
z3∈CSn

Δ(z1, z2, z3)∏
i∈[r]
j∈[s]
k∈[n]

dz1i !dz2j !dz3k ! id
z1
i jd

z2
j kd

z3
k

. (1)

|In| =
∑

π∈Sn

Δ(zπ, zπ, zπ)

n!
=

∑

z∈CSn

Δ(z, z, z)∏
i∈[n] d

z
i !i

dzi
. (2)

The next result shows how the set RΘ and its cardinality can explicitly
be determined by means of the affine variety defined by a zero-dimensional
radical subideal of the ideal Irsn.

Theorem 3.4 Let Θ = (α, β, γ) be an isotopism of Rr,s,n. The set RΘ is
identified with the affine variety defined by the ideal IΘ = Ir,s,n ∪ 〈 xijk −
xα(i)β(j)γ(k) : i ∈ [r], j ∈ [s], k ∈ [n] 〉 ⊆ Z/2Z[x111, . . . , xrsn]. Further, Δ(zα,
zβ, zγ) = |RΘ| = dimZ/2Z(Z/2Z[x111, . . . , xrsn]/IΘ).

Proof. Let (a111, . . . , arsn) ∈ {0, 1}rsn be a point of the affine variety defined
by the ideal IΘ. Since it is a subideal of Ir,s,n, this point is uniquely related
to the partial Latin rectangle P = (pij) ∈ Rr,s,n such that pij = k if aijk = 1
and ∅, otherwise. Further, the binomials xijk − xα(i)β(j)γ(k) that have been
incorporated in the set of generators of the ideal Ir,s,n in order to define the
new ideal IΘ involve our point to satisfy the identity aijk = aα(i)β(j)γ(k), for all
(i, j, k) ∈ [r]× [s]× [n]. This is equivalent to the identity pα(i)β(j) = γ(pij), for
all (i, j) ∈ [r] × [s] such that pij ∈ [n]. It involves the isotopism Θ to be an
autotopism of P . �

In order to determine the affine variety in Theorem 3.4, we implemented
the procedure PLRT in Singular [5], which is available online on the URL



http://www.personal.us.es/raufalgan/LS/pls.lib. This has been used
to compute the values Δ(z1, z2, z3) for all (z1, z2, z3) ∈ CSr ×CSs ×CSn satis-
fying the hypothesis of Lemma 3.3, being r, s, n ≤ 6. Expressions (1) and (2)
have then be applied to determine the distribution of Rr,s,n into isomorphism
and isotopism classes in Tables 2 and 3.

n |In|
1 2

2 20

3 2029

4 5319934

5 534759300182

6 2815323435872410905

Table 2
Distribution of partial Latin squares into isomorphisms classes.

r s n |Ir,s,n|
2 2 2 8

3 10

4 11

5 11

6 11

3 3 20

4 27

5 29

6 30

r s n |Ir,s,n|
2 4 4 54

5 70

6 78

5 5 125

6 166

6 6 292

3 3 3 81

4 184

5 279

r s n |Ir,s,n|
3 3 6 325

4 4 839

5 2227

6 3825

5 5 11194

6 33299

6 6 177892

4 4 4 9878

5 61955

r s n |Ir,s,n|
4 4 6 218558

5 5 914969

6 7074338

6 6 118883849

5 5 5 37202840

6 742190170

6 6 37349106398

6 6 6 5431010366322

Table 3
Distribution of partial Latin rectangles into isotopism classes.
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