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Abstract

Let I,, be the set of involutions in the symmetric group S,,, and for A C {0,1,...,n},
let

FA = {0 €I, | o has a fixed points for some a € A}.

We give a complete characterisation of the sets A for which Frf‘, with the order

induced by the Bruhat order on S, is a graded poset. In particular, we prove that
F{l{l} (i.e., the set of involutions with exactly one fixed point) is graded, which settles

a conjecture of Hultman in the affirmative. When F;f‘ is graded, we give its rank
function. We also give a short new proof of the EL-shellability of Fﬁ{o} (i.e., the

set of fixed point-free involutions), which was recently proved by Can, Cherniavsky,
and Twelbeck.
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1 Introduction

Partially ordered by the Bruhat order, the symmetric group S, is a graded
poset whose rank function is given by the number of inversions, and Edel-
man [4] proved that it is EL-shellable. Richardson and Springer [10] proved
that the set I,, of involutions in S,, and the set F° of fixed point-free involutions
are graded. Incitti [9] proved that the rank function of I,, can be expressed as
the average of the number of inversions and the number of exceedances, and
that [,, is EL-shellable. Hultman [8] studied (in a more general setting, which
we shall describe shortly) F? and F!, the set of involutions with exactly one
fixed point. It follows that F° is graded and Hultman conjectured that the
same is true for F}. Can, Cherniavsky, and Twelbeck [3] recently proved that
FY is EL-shellable.

We consider the following generalisation. For a € {0,1,...,n}, let E¢ be
the conjugacy class in S, consisting of the involutions with a fixed points, and

for AC {0,1,...,n}, let
Fr=JF

acA
Both I,, and F* are regarded as posets with the order induced by the Bruhat
order on .S,,. Note that

FA = {0 €I, |0 has a fixed points for some a € A}.

Also note that for all elements in I,,, the number of fixed points is congruent
to n modulo 2. Hence, we may assume that all members of A have the same
parity as n.

Depicted in Figures 1 and 2, are the Hasse diagrams of I, FY, and F?.

Our main result is a complete characterisation of the sets A for which F4
is graded. In particular, we prove that F! is graded.

Informally, F4 is graded precisely when A —{n} is empty or an “interval,”
which may consist of a single element if it is 0, 1, or n — 2. The following
theorem, which is our main result, makes the above precise. It also gives the
rank function of F! when it exists.

Theorem 1 The poset F2 is graded if and only if A—{n} =0 or A—{n} =
{a1,a1+2,... a2} with ay € {0,1}, aa =n—2, or ag —ay > 2. Furthermore,
when F2 is graded, its rank function p is given by

plo) = 5

_inv(o) +exc(o) —n+a 1 ifnecA
0 otherwise,



Figure 1. Hasse diagram of I, with the involutions with zero (o), two (e), and four
(o) fixed points indicated.

Figure 2. Hasse diagrams of F (left) and F? (right).

where inv(o) and exc(o) denote the number of inversions and exceedances,
respectively, of o, and @ = max(A — {n}). In particular, F* has rank

pF) =

n? —a? — 2n + 23 {1 ifneA
4

0 otherwise,

where a = min A.
The following result is direct consequence of Theorem 1.

Corollary 2 The posets F°, F}, F"=2  and F" are the only graded conjugacy
classes of involutions in S,. Furthermore, the rank function p of F° and F}
s given by
inv(o) — |n/2]
plo) = 5 ,
and the rank function p of F™=2 is given by

inv(o) — 1.

plo) = 5

It is well known that F"~% is graded (in fact, it coincides with the root



poset of the Weyl group A,,_1 = S,,). As was mentioned above, the gradedness
of F? was proved by Richardson and Springer, and that of F! was conjectured
by Hultman. These two posets are special cases of a more general construction
from Hultman’s paper [8], which we now briefly describe.

Given a finitely generated Coxeter system (I, S) and an involutive auto-
morphism 0 of (W, S) (i.e., a group automorphism 6 of W such that 6(S) = S
and 0% = id), let

1(0) = {0(w Hw | w e W}
and
30)={we W |0(w) =w""}

be the sets of twisted identities and twisted involutions, respectively. Clearly,
1(f) € 3(#) C W. Each subset of W is regarded as a poset with the order
induced by the Bruhat order on W.

If W is finite, it contains a greatest element wy, and 6(w) = wowwy defines
an involutive automorphism of (W, S). In this case, +(6) is isomorphic to the
dual of [wy], where [wy] is the conjugacy class of wg, and J(6) is isomorphic
to the dual of I(W), where I(W) is the set of involutions in W. When W is
the symmetric group S, [(W) = I, [we] = F) for n even, and [wo] = F)} for
n odd.

Since ¢(0) is graded whenever W is dihedral, as is easily seen, it follows
from [8, Theorem 4.6 and Proposition 6.7] that ¢+(f) is graded whenever W is
finite and irreducible, unless W = Sy, .1 with € as above. It was conjectured
by Hultman [8, Conjecture 6.1] that ¢«(6) is graded also in this last case. As
we have seen, this is equivalent to F! being graded, which is the case (see
Corollary 2). Hence, we get the following:

Theorem 3 If W is finite, then +(0) is graded.

Let us also mention a connection to work by Richardson and Springer
[10,11], who studied a partially ordered set V' of orbits of certain symmetric
varieties (depending on, inter alia, a group G). They did so by defining an
order-preserving function ¢ : V. — J(0) C W (where the Weyl group W
depends on, inter alia, G).

To explain this connection, and for later purposes, define

Fro=|JFy® and Fpo=| )R,

i>0 i>0



and for as = a; + 2m, where m is a positive integer, let
Favaz — FZal N F§a2
n n n °

Note that F#1:%2 is not defined for a; = as.
It can be seen that J(6), +(#), and F=¢ for each a < n — 2, are the images
of such functions.

We also give a short new proof of the following result, which was recently
proved by Can, Cherniavsky, and Twelbeck.

Theorem A ([3, Theorem 1]) The poset F?° is EL-shellable.

2 A brief sketch of the proof of the main result

In this section, we state a number of lemmas and propositions, from which
Theorem 1 easily follows.

We use several results due to Incitti. Here, we only state the one that we
need in the proof of Theorem 1.

Lemma 4 ([9, Theorem 5.2]) The poset I, is graded with rank function p
given by
inv(o) + exc(o)

2

The strategy for proving that a poset F is graded is as follows. We first
prove that F# has a maximum and that all its minimal elements have the
same rank in I,, (see Propositions 6 and 7). We then prove that if o, 7 € F4,
then o <t 7 in F2 if and only if ¢ < 7 in I,, (one implication is obvious). This
is done in Lemmas 9, 10, and 11. Since I, is graded, it thus follows that F*
is graded.

In particular, when F4 € {F=% F2%} to prove that ¢ < 7in I, if 0 < 7
in F4 we assume that o #4 7 in I,, and consider the increasing and the
decreasing o-7-chains in [,. We then prove that either the element in the
increasing chain that covers o, or the element in the decreasing chain that is
covered by 7, has to belong to FA. This contradicts the fact that o <t 7 in
FA.

To prove that a poset Ff is not graded, we consider an interval [o, 7], and
then construct two o-7-chains in F* of different lengths (see Propositions 13
and 14).

Let us first note the following fact:

plo) =



Lemma 5 For all n and all A, F is graded if and only if J O graded.

In the next two results, we describe the maximal and minimal elements
of FA.
Proposition 6 For all n and all A, F* has a 1. Furthermore, inv(l) =

228 (n+a—1) and exc(l) = “5%, where a = min A.

Proposition 7 For all n and all A, all minimal elements of F2 have rank
(n —maxA)/2 in I,.

The following lemma will eventually allow us to conclude that F=%, F=*,
and F3t%? are graded.

Lemma 8 If every cover in F* is a cover in I,,, then F2 is graded.
Proof This follows from Lemma 4 and Propositions 6 and 7. O

Lemma 9 Let o <7 in F=% Then o < 7 in I,.
Lemma 10 Let 0 < 7 in F2*. Then o <7 in I,.
Lemma 11 Let o < 7 in Fv2. Then o Q7 in L,.

The proof of Lemma 10 requires more work than the proof of Lemma 9.
The proof of Lemma 11 is largely a combination of the proofs of Lemmas 9
and 10.

Proposition 12 The posets F=%, FZ and F*2 are graded.

n n

Proof This follows from Lemmas 8, 9, 10, and 11. O
In the following two results, we describe the sets A for which F4 is not
graded.

Proposition 13 If there is ani € [2,n—4] such thati € A buti—2,i+2 ¢ A,
then F2 is not graded.

The proof is similar to, but easier than, the proof of Proposition 14.
Proposition 14 If there is an i ¢ A and a positive integer m such that
i—2,i+2m € A—{n}, then F2 is not graded.

Figure 3 illustrates the proof when n = 6.

We are now ready to prove our main result:

Proof of Theorem 1 The first claim follows from Lemma 5 and Proposi-
tions 12, 13, and 14. (It is readily checked that if FA™ does not belong to
{0, F=* Fz* F:92} then either there is an i € [2,n — 4] such that i € A but

n



T = 623451

216453 163452

214365 126453

213465 123654
o = 123465

Figure 3. Two o-7-chains in I of length 4, and two o-7-chains in FéoA} of length 4
(right) and length 2 (left); the involutions marked by a e belong to FéoA}, and the
involutions marked by a o belong to Ig — F6{0’4} .

i—2,i4+2 ¢ A, or there are an i ¢ A and a positive integer m such that
i—2,i+2m € A—{n}.) The second claim follows from Lemma 4, Proposi-
tion 7, and Lemmas 9, 10, and 11. The third claim follows from the second
claim and Proposition 6. O
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