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Abstract

A uniform hypergraph H is called k-Ramsey for a hypergraph F , if no matter how
one colors the edges of H with k colors, there is always a monochromatic copy
of F . We say that H is minimal k-Ramsey for F , if H is k-Ramsey for F but
every proper subhypergraph of H is not. Burr, Erdős and Lovasz [S. A. Burr, P.
Erdős, and L. Lovász, On graphs of Ramsey type, Ars Combinatoria 1 (1976), no. 1,
167–190] studied various parameters of minimal Ramsey graphs. In this paper we
initiate the study of minimum degrees and codegrees of minimal Ramsey 3-uniform
hypergraphs. We show that the smallest minimum vertex degree over all minimal k-

Ramsey 3-uniform hypergraphs for K
(3)
t is exponential in some polynomial in k and

t. We also study the smallest possible minimum codegrees over minimal 2-Ramsey
3-uniform hypergraphs.
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1 Introduction and New Results

A graph G is said to be Ramsey for a graph F if no matter how one colors
the edges of G with two colors, say red and blue, there is a monochromatic
copy of F . A classical result of Ramsey [11] states that for every F there
is an integer n such that Kn is Ramsey for F . If G is Ramsey for F but
every proper subgraph of G is not Ramsey for F , then we say that G is
minimal Ramsey for F . We denote by Mk(F ) the set of minimal graphs G
with the property that no matter how one colors the edges of G with k colors,
there is a monochromatic copy of F in it, and refer to these as minimal k-
Ramsey graphs for F . There are many challenging open questions concerning
the study of various parameters of minimal k-Ramsey graphs for various F .
The most studied ones are the classical (vertex) Ramsey numbers rk(F ) :=
minG∈Mk(F ) v(G) and the size Ramsey number r̂k(F ) := minG∈Mk(F ) e(G),
where v(G) is the number of vertices in G and e(G) is its number of edges.
To determine the classical Ramsey number r2(Kt) is a notoriously difficult
problem and essentially the best known bounds are 2(1+o(1))t/2 and 2(2+o(1))t

due to Spencer [13] and Conlon [4].

Burr, Erdős and Lovász [1] were the first to study other possible parame-
ters of the class M2(Kt). In particular they determined the minimum de-
gree s2(Kt) := minG∈M2(Kt) δ(G) = (t − 1)2 which looks surprising given
the exponential bound on the minimum degree of Kn with n = r2(Kt) (it
is not difficult to see that Kn ∈ M2(Kt)). Extending their results, Fox,
Grinshpun, Liebenau, Person and Szabó [7] studied the minimum degree
sk(Kt) := minG∈Mk(Kt) δ(G) for more colors showing a general bound on
sk(Kt) ≤ 8(t − 1)6k3 and proving quasiquadratic bounds in k on sk(Kt)
for fixed t. Further results concerning minimal Ramsey graphs were stud-
ied in [2,8,9,12,14].

Here we initiate the study of minimal Ramsey 3-uniform hypergraphs and
provide first bounds on various notions of minimum degrees for minimal Ram-
sey hypergraphs. Generally, an r-uniform hypergraph H is a tuple (V,E) with
vertex set V and E ⊆ (

V
r

)
being its edge set. Ramsey’s theorem holds for r-

uniform hypergraphs as well, as shown originally by Ramsey himself [11], and
we write G −→ (F )k if G is k-Ramsey for F , i.e. if no matter how one colors
the edges of the r-uniform hypergraph G, there is a monochromatic copy of
F . We denote by K

(r)
t the complete r-uniform hypergraph with t vertices, i.e.
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K
(r)
t = ([t],

(
[t]
r

)
), and by the hypergraph Ramsey number rk(F ) the smallest n

such that K
(r)
n −→ (F )k. While in the graph case the known bounds on r2(Kt)

are only polynomially far apart, already in the case of 3-uniform hypergraphs
the bounds on r2(K

(3)
t ) differ in one exponent: 2c1t

2 ≤ r2(K
(3)
t ) ≤ 22

c2t for
some absolute positive constants c1 and c2, and a similar situation occurs for
higher uniformities. For further information on Ramsey numbers we refer the
reader to the standard book on Ramsey theory [10] and for newer results to
the survey of Conlon, Fox and Sudakov [5].

Given � ∈ [r−1], we define the degree deg(S) of an �-set S in an r-uniform
hypergraph H = (V,E) as the number of edges that contain S and we define
the minimum �-degree δ�(H) := minS∈(V� )

deg(S). For two vertices u and v

we simply write deg(u, v) for the codegree deg({u, v}). Similar to the graph
case we extend verbatim the notion of minimal Ramsey graphs to minimal
Ramsey r-uniform hypergraphs in a natural way. That is, Mk(F ) is the set of
all minimal k-Ramsey r-uniform hypergraphs H, i.e. consisting of those with
H −→ (F )k but H ′ �−→ (F )k for all H ′ � H. We define

sk,�(K
(r)
t ) := min

H∈Mk(K
(r)
t )

δ�(H), (1)

which extends the introduced graph parameter sk(Kt). It will be shown actu-

ally that s2,2(K
(3)
t ) is zero and thus it makes sense to ask for the second smallest

value of the codegrees. This motivates the following parameter s′k,�(K
(r)
t ):

s′k,�(K
(r)
t ) := min

H∈Mk(K
(r)
t )

(
min

{
degH(S) : S ∈

(
V (H)

�

)
, degH(S) > 0

})
.

We prove the following results on the minimum degree and codegree of
minimal Ramsey 3-uniform hypergraphs for cliques K

(3)
t .

Theorem 1.1 The following holds for all t ≥ 4 and k ≥ 2

r̂k(Kt−1) ≤ sk,1(K
(3)
t ) ≤ k20kt4 . (2)

The lower bound r̂k(Kt−1) is the size-Ramsey number for Kt−1 and it was
shown by Erdős, Faudree, Rousseau and Schelp [6] that r̂k(K�) =

(
rk(K�)

2

)
. Us-

ing the lower bound on rk(K�) ≥ 2
1−o(1)

4
k� (see e.g. [5]) we obtain sk,1(K

(3)
t ) ≥

2
1
2
kt(1−o(1)).



Theorem 1.2 Let t ≥ 4 be an integer. Then,

s2,2(K
(3)
t ) = 0 and s′2,2(K

(3)
t ) = (t− 2)2.

Notice that with s′2,2 we ask for the smallest positive codegree, while for
s2,2 we also allow the codegree to be zero. This in particular means that in

any minimal 2-Ramsey hypergraph H for K
(3)
t we have that a pair of vertices

u and v are either not contained in a common edge or have codegree at least
(t − 2)2. This might look surprising at the first sight since taking K

(3)
n with

n = r2(K
(3)
t ) and then deleting all edges that contain two distinguished vertices

gives a non-Ramsey hypergraph.

2 Main tools

2.1 BEL-gadgets

We refer in the following to a coloring without a monochromatic copy of F as
an F -free coloring. Our first tool is a result that asserts existence of non-k-
Ramsey hypergraphs H for K

(3)
t that impose certain structure on all K

(3)
t -free

colorings of E(H).

Theorem 2.1 Let k ≥ 2 and t ≥ 4 be integers. Let H be a 3-uniform hyper-

graph with H �→
(
K

(3)
t

)
k
and let c : E(H) → [k] be a k-coloring which avoids

monochromatic copies of K
(3)
t . Then, there exists a 3-uniform hypergraph H

with the following properties:

(i) H �→
(
K

(3)
t

)
k
,

(ii) H contains H as an induced subhypergraph, i.e. H[V (H)] = H,

(iii) for every coloring ϕ : E(H) → [k] without a monochromatic copy of K
(3)
t ,

the coloring of H under ϕ agrees with the coloring c, up to a permutation
of the k colors,

(iv) if there are two vertices a, b ∈ V (H) with degH(a, b) = 0 then degH(a, b) =
0 as well,

(v) if |V (H)| ≥ 4 then for every vertex x ∈ V (H)\V (H) there exists a vertex
y ∈ V (H) such that degH(x, y) = 0.

This theorem is crucial for our constructions of minimal k-Ramsey hy-
pergraphs and thus for giving upper bounds on sk,1(K

(3)
t ), sk,2(K

(3)
t ) and

s′k,2(K
(3)
t ), respectively. For its proof we first show the existence of a 3-uniform



hypergraph H and two edges f , e ∈ E(H) with |f ∩e| = 2 and e(H[e∪f ]) = 2

so that H is not k-Ramsey for K
(3)
t with the property that any F -free k-

coloring of E(H) colors the edges e and f differently. Putting several copies
of these hypergraphs together in an appropriate way we receive a hypergraph
promised by Theorem 2.1 (and we refer to such H as BEL-gadgets). In the
graph case similar gadgets (called positive/negative signal senders) were given
first by Burr, Erdős and Lovász [1] in the case of two colors, and later gener-
alized by Burr, Nešetřil and Rödl [2] and by Rödl and Siggers [12].

2.2 Random hypergraphs

The random hypergraph H(3)(n, p) is the probability space of all labeled 3-
uniform hypergraphs on the vertex set [n] with each edge appearing with
probability p independently of all other edges. The following lemma is crucial
for the upper bound (2) in Theorem 1.1.

Lemma 2.2 Let t ≥ 4 and k ≥ 2 be integers. There is a 3-uniform hypergraph
H on n = k10kt

4
vertices, which can be written as an edge-disjoint union of k

3-uniform hypergraphs H1, . . . , Hk with the following properties:

(i) for every i ∈ [k], Hi contains no copies of K
(3)
t , and

(ii) for any coloring c of the edges of the complete graph Kn with k colors there
exists a color x ∈ [k] and k sets S1, . . . , Sk that induce copies of Kt−1 in

color x under the coloring c such that H1[S1] ∼= . . . ∼= Hk[Sk] ∼= K
(3)
t−1.

The rough idea of the proof of Lemma 2.2 is to take k random hypergraphs
H ′

1, . . . , H
′
k ∼ H(3)(n, p), with p being chosen appropriately. And then to show

that, with positive probability, even after deleting those edges which appear
in at least two hypergraphs H ′

i or in a copy of K
(3)
t inside some H ′

i, we are
left with k edge-disjoint hypergraphs H1, . . . , Hk that satisfy the conditions
above.

For the details we refer the reader to the full version of our paper [3].

3 Proof of Theorem 1.1

Lower bound

Take a minimal k-Ramsey hypergraph H for K
(3)
t together with a vertex

v ∈ V (H) such that deg(v) = δ(H) = sk,1(K
(3)
t ). We know that there exists

a K
(3)
t -free k-coloring of H \ {v} which cannot be extended to a K

(3)
t -free

k-coloring of H. But this implies that linkH(v) −→ (Kt−1)k holds, where



linkH(v) is the link of v, i.e., the graph consiting of all edges e such that

e ∪ {v} ∈ E(H). Therefore: sk,1(K
(3)
t ) = deg(v) ≥ r̂k(Kt−1).

Upper bound

The proof of our upper bound on sk,1(K
(3)
t ) makes use of the BEL-gadgets.

We fix a 3-uniform hypergraph H as asserted by Lemma 2.2 and a K
(3)
t -free

k-coloring c of E(H) which colors each of the subhypergraphs Hi monochro-
matically with color i ∈ [k]. Applying Theorem 2.1 for this choice of H and
c, we obtain a new hypergraph H′, that contains H as an induced subhy-
pergraph, and we extend it further to a hypergraph H by adding one new
vertex v with the edges {v, a, b} for all {a, b} ∈ (

V (H)
2

)
, i.e. the link of v is

linkH(v) :=
(
V (H)

2

)
. So, degH(v) =

(
n
2

)
< k20kt4 holds. Owing to the assertions

onH′ we haveH′ �−→ (K
(3)
t )k. On the other hand one can showH −→ (K

(3)
t )k,

which follows from Property (ii) of Lemma 2.2. Thus, we conclude that there

needs to exist a minimal k-Ramsey hypergraph H′′ of K(3)
t with H′ ⊆ H′′ ⊆ H

and 0 < degH′′(v) < k20kt4 . �

4 Proof of Theorem 1.2

The size of s′2,2
For the proof of s′2,2(K

(3)
t ) ≥ (t − 2)2 we take a minimal 2-Ramsey hy-

pergraph H for K
(3)
t together with two vertices u and v ∈ V (H) such that

degH(u, v) > 0. We aim to show that degH(u, v) ≥ (t− 2)2, and thus, for con-
tradiction, we assume the opposite. We then delete all edges containing both u

and v in order to obtain a hypergraph H ′, which satisfies H ′ �→
(
K

(3)
t

)
2
. That

is, we find a red-blue coloring c of E(H ′) which does not create a monochro-

matic copy of K
(3)
t . Now, let N(u, v) := {w ∈ V (H) : {u, v, w} ∈ E(H)},

degH(u, v) = |N(u, v)|, and fix a longest sequence B1,. . . ,Bk of vertex disjoint
sets of size t−2 in N(u, v), such that both Bi∪{u} and Bi∪{v} span only blue
edges under the coloring c in H ′. By assumption on the codegree degH(u, v),
we know that k < t−2. We then extend the coloring c to a coloring of E(H) as
follows. For each edge e = {u, v, w} ∈ E(H) with w ∈ ⋃

Bi we set c(e) = red,
while for all other edges e = {u, v, w} ∈ E(H) we set c(e) = blue. It then

follows that under this coloring there is no monochromatic copy of K
(3)
t in H,

contradicting H → (K
(3)
t )2.

For the proof of s′2,2(K
(3)
t ) ≤ (t − 2)2 we first provide a hypergraph H

as follows. We choose V (H) := [(t − 2)2] ∪ {a, b} together with a partition



of [(t − 2)2] into (t − 2) equal-sized sets V1,. . . , Vt−2. Moreover, we define

E(H) by taking all edges of the clique K
(3)

(t−2)2+2 on the vertex set
⋃

Vi∪{a, b}
and then deleting all edges that contain both a and b plus deleting all edges
that cross exactly two different Vis and contain neither a nor b. For this
particular hypergraph, we then define a red-blue-coloring c as follows: the
edges contained in Vi ∪ {a} and in Vi ∪ {b} for i ∈ [t − 2] are colored blue,
while the other edges of H are colored red. By construction of H this coloring
does not produce a monochromatic copy of K

(3)
t .

Now, applying Theorem 2.1 to H and c, we obtain a 3-uniform hyper-
graph H which contains H as an induced subhypergraph such that H �→ K

(3)
t ,

degH(a, b) = 0 and such that any K
(3)
t -free red-blue coloring φ of E(H) agrees

on E(H) with the coloring c up to permutation of the two colors. Extending
this construction by adding to H all (t−2)2 edges {a, b, u} where u ∈ [(t−2)2],
we finally end up in a hypergraph H′ for which it is not difficult to see
that H′ −→ (K

(3)
t )2. Thus, as H �→ (K

(3)
t )2, there needs to exist a min-

imal 2-Ramsey hypergraph H′′ of K(3)
t with H ⊆ H′′ ⊆ H′ and such that

0 < degH′′(a, b) ≤ (t− 2)2, i.e., s′2,2(K
(3)
t ) ≤ (t− 2)2.

Showing s2,2(K
(3)
t ) = 0.

Let us consider the previous construction of H′ again. As s′2,2(K
(3)
t ) =

(t − 2)2 was proven, we know that any minimal 2-Ramsey subhypergraph of

H′ for K
(3)
t has to contain all (t − 2)2 edges that contain a and b, and in

particular, any such minimal hypergraph H′′ needs to contain all vertices of
the induced subhypergraph H. However, H′′[V (H)] �−→ (K

(3)
t )2 holds, as can

be seen by considering a red-blue-edge-coloring chosen uniformly at random
and showing that the expected number of monochromatic copies of K

(3)
t in

H′′[V (H)] is less than 1.

Thus, any minimal 2-Ramsey subhypergraph H′′ of H′ has to contain at
least one further vertex x �∈ V (H). Then, since |V (H)| = (t− 2)2 + 2 ≥ 6, it
follows by Property (v) of Theorem 2.1 that there exists a vertex y ∈ V (H)

such that 0 = degH′(x, y) ≥ degH′′(x, y), i.e., s2,2(K
(3)
t ) = 0. �

For the details we refer the reader to the full version of our paper [3].
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