

Available online at www.sciencedirect.com

ScienceDirect

Electronic Notes in DISCRETE MATHEMATICS

www.elsevier.com/locate/endm

Minimum degrees and codegrees of minimal Ramsey 3-uniform hypergraphs

Dennis Clemens¹

Institut für Mathematik Technische Universität Hamburg-Harburg 21073 Hamburg, Germany

Yury Person^{2,3}

Institut für Mathematik Goethe-Universität 60325 Frankfurt am Main, Germany

Abstract

A uniform hypergraph H is called k-Ramsey for a hypergraph F, if no matter how one colors the edges of H with k colors, there is always a monochromatic copy of F. We say that H is minimal k-Ramsey for F, if H is k-Ramsey for F but every proper subhypergraph of H is not. Burr, Erdős and Lovasz [S. A. Burr, P. Erdős, and L. Lovász, On graphs of Ramsey type, Ars Combinatoria 1 (1976), no. 1, 167–190] studied various parameters of minimal Ramsey graphs. In this paper we initiate the study of minimum degrees and codegrees of minimal Ramsey 3-uniform hypergraphs. We show that the smallest minimum vertex degree over all minimal k-Ramsey 3-uniform hypergraphs for $K_t^{(3)}$ is exponential in some polynomial in k and t. We also study the smallest possible minimum codegrees over minimal 2-Ramsey 3-uniform hypergraphs.

Keywords: minimal Ramsey hypergraph, minimum degree and codegree

1 Introduction and New Results

A graph G is said to be Ramsey for a graph F if no matter how one colors the edges of G with two colors, say red and blue, there is a monochromatic copy of F. A classical result of Ramsey [11] states that for every F there is an integer n such that K_n is Ramsey for F. If G is Ramsey for F but every proper subgraph of G is not Ramsey for F, then we say that G is minimal Ramsey for F. We denote by $\mathcal{M}_k(F)$ the set of minimal graphs G with the property that no matter how one colors the edges of G with k colors, there is a monochromatic copy of F in it, and refer to these as minimal k-Ramsey graphs for F. There are many challenging open questions concerning the study of various parameters of minimal k-Ramsey graphs for various F. The most studied ones are the classical (vertex) Ramsey numbers $r_k(F) :=$ $\min_{G \in \mathcal{M}_k(F)} v(G)$ and the size Ramsey number $\hat{r}_k(F) := \min_{G \in \mathcal{M}_k(F)} e(G)$, where v(G) is the number of vertices in G and e(G) is its number of edges. To determine the classical Ramsey number $r_2(K_t)$ is a notoriously difficult problem and essentially the best known bounds are $2^{(1+o(1))t/2}$ and $2^{(2+o(1))t}$ due to Spencer [13] and Conlon [4].

Burr, Erdős and Lovász [1] were the first to study other possible parameters of the class $\mathcal{M}_2(K_t)$. In particular they determined the minimum degree $s_2(K_t) := \min_{G \in \mathcal{M}_2(K_t)} \delta(G) = (t-1)^2$ which looks surprising given the exponential bound on the minimum degree of K_n with $n = r_2(K_t)$ (it is not difficult to see that $K_n \in \mathcal{M}_2(K_t)$). Extending their results, Fox, Grinshpun, Liebenau, Person and Szabó [7] studied the minimum degree $s_k(K_t) := \min_{G \in \mathcal{M}_k(K_t)} \delta(G)$ for more colors showing a general bound on $s_k(K_t) \leq 8(t-1)^6 k^3$ and proving quasiquadratic bounds in k on $s_k(K_t)$ for fixed t. Further results concerning minimal Ramsey graphs were studied in [2,8,9,12,14].

Here we initiate the study of minimal Ramsey 3-uniform hypergraphs and provide first bounds on various notions of minimum degrees for minimal Ramsey hypergraphs. Generally, an *r*-uniform hypergraph *H* is a tuple (V, E) with vertex set *V* and $E \subseteq \binom{V}{r}$ being its edge set. Ramsey's theorem holds for *r*uniform hypergraphs as well, as shown originally by Ramsey himself [11], and we write $G \longrightarrow (F)_k$ if *G* is *k*-Ramsey for *F*, i.e. if no matter how one colors the edges of the *r*-uniform hypergraph *G*, there is a monochromatic copy of *F*. We denote by $K_t^{(r)}$ the complete *r*-uniform hypergraph with *t* vertices, i.e.

¹ Email: dennis.clemens@tuhh.de

² Email: person@math.uni-frankfurt.de

 $^{^{3}}$ YP is partially supported by DFG grant PE 2299/1-1.

 $K_t^{(r)} = ([t], {t \choose r})$, and by the hypergraph Ramsey number $r_k(F)$ the smallest n such that $K_n^{(r)} \longrightarrow (F)_k$. While in the graph case the known bounds on $r_2(K_t)$ are only polynomially far apart, already in the case of 3-uniform hypergraphs the bounds on $r_2(K_t^{(3)})$ differ in one exponent: $2^{c_1t^2} \leq r_2(K_t^{(3)}) \leq 2^{2^{c_2t}}$ for some absolute positive constants c_1 and c_2 , and a similar situation occurs for higher uniformities. For further information on Ramsey numbers we refer the reader to the standard book on Ramsey theory [10] and for newer results to the survey of Conlon, Fox and Sudakov [5].

Given $\ell \in [r-1]$, we define the degree deg(S) of an ℓ -set S in an r-uniform hypergraph H = (V, E) as the number of edges that contain S and we define the minimum ℓ -degree $\delta_{\ell}(H) := \min_{S \in \binom{V}{\ell}} \deg(S)$. For two vertices u and vwe simply write deg(u, v) for the *codegree* deg $(\{u, v\})$. Similar to the graph case we extend verbatim the notion of minimal Ramsey graphs to minimal Ramsey r-uniform hypergraphs in a natural way. That is, $\mathcal{M}_k(F)$ is the set of all minimal k-Ramsey r-uniform hypergraphs H, i.e. consisting of those with $H \longrightarrow (F)_k$ but $H' \not\rightarrow (F)_k$ for all $H' \subsetneq H$. We define

$$s_{k,\ell}(K_t^{(r)}) := \min_{H \in \mathcal{M}_k(K_t^{(r)})} \delta_\ell(H), \tag{1}$$

which extends the introduced graph parameter $s_k(K_t)$. It will be shown actually that $s_{2,2}(K_t^{(3)})$ is zero and thus it makes sense to ask for the second smallest value of the codegrees. This motivates the following parameter $s'_{k,\ell}(K_t^{(r)})$:

$$s'_{k,\ell}(K_t^{(r)}) := \min_{H \in \mathcal{M}_k(K_t^{(r)})} \left(\min\left\{ \deg_H(S) \colon S \in \binom{V(H)}{\ell}, \deg_H(S) > 0 \right\} \right).$$

We prove the following results on the minimum degree and codegree of minimal Ramsey 3-uniform hypergraphs for cliques $K_t^{(3)}$.

Theorem 1.1 The following holds for all $t \ge 4$ and $k \ge 2$

$$\hat{r}_k(K_{t-1}) \le s_{k,1}(K_t^{(3)}) \le k^{20kt^4}.$$
 (2)

The lower bound $\hat{r}_k(K_{t-1})$ is the size-Ramsey number for K_{t-1} and it was shown by Erdős, Faudree, Rousseau and Schelp [6] that $\hat{r}_k(K_\ell) = \binom{r_k(K_\ell)}{2}$. Using the lower bound on $r_k(K_\ell) \geq 2^{\frac{1-o(1)}{4}k\ell}$ (see e.g. [5]) we obtain $s_{k,1}(K_t^{(3)}) \geq 2^{\frac{1}{2}kt(1-o(1))}$. **Theorem 1.2** Let $t \ge 4$ be an integer. Then,

 $s_{2,2}(K_t^{(3)}) = 0 \text{ and } s'_{2,2}(K_t^{(3)}) = (t-2)^2.$

Notice that with $s'_{2,2}$ we ask for the smallest *positive* codegree, while for $s_{2,2}$ we also allow the codegree to be zero. This in particular means that in *any* minimal 2-Ramsey hypergraph H for $K_t^{(3)}$ we have that a pair of vertices u and v are either not contained in a common edge or have codegree at least $(t-2)^2$. This might look surprising at the first sight since taking $K_n^{(3)}$ with $n = r_2(K_t^{(3)})$ and then deleting all edges that contain two distinguished vertices gives a non-Ramsey hypergraph.

2 Main tools

2.1 BEL-gadgets

We refer in the following to a coloring without a monochromatic copy of F as an *F*-free coloring. Our first tool is a result that asserts existence of non-k-Ramsey hypergraphs \mathcal{H} for $K_t^{(3)}$ that impose certain structure on all $K_t^{(3)}$ -free colorings of $E(\mathcal{H})$.

Theorem 2.1 Let $k \ge 2$ and $t \ge 4$ be integers. Let H be a 3-uniform hypergraph with $H \not\rightarrow \left(K_t^{(3)}\right)_k$ and let $c \colon E(H) \rightarrow [k]$ be a k-coloring which avoids monochromatic copies of $K_t^{(3)}$. Then, there exists a 3-uniform hypergraph \mathcal{H} with the following properties:

- (i) $\mathcal{H} \not\rightarrow \left(K_t^{(3)}\right)_k$,
- (ii) \mathcal{H} contains H as an induced subhypergraph, i.e. $\mathcal{H}[V(H)] = H$,
- (iii) for every coloring φ: E(H) → [k] without a monochromatic copy of K_t⁽³⁾, the coloring of H under φ agrees with the coloring c, up to a permutation of the k colors,
- (iv) if there are two vertices $a, b \in V(H)$ with $\deg_H(a, b) = 0$ then $\deg_H(a, b) = 0$ as well,
- (v) if $|V(H)| \ge 4$ then for every vertex $x \in V(\mathcal{H}) \setminus V(H)$ there exists a vertex $y \in V(H)$ such that $\deg_{\mathcal{H}}(x, y) = 0$.

This theorem is crucial for our constructions of minimal k-Ramsey hypergraphs and thus for giving upper bounds on $s_{k,1}(K_t^{(3)})$, $s_{k,2}(K_t^{(3)})$ and $s'_{k,2}(K_t^{(3)})$, respectively. For its proof we first show the existence of a 3-uniform

hypergraph \mathcal{H} and two edges $f, e \in E(\mathcal{H})$ with $|f \cap e| = 2$ and $e(\mathcal{H}[e \cup f]) = 2$ so that \mathcal{H} is not k-Ramsey for $K_t^{(3)}$ with the property that any F-free kcoloring of $E(\mathcal{H})$ colors the edges e and f differently. Putting several copies of these hypergraphs together in an appropriate way we receive a hypergraph promised by Theorem 2.1 (and we refer to such \mathcal{H} as BEL-gadgets). In the graph case similar gadgets (called *positive/negative signal senders*) were given first by Burr, Erdős and Lovász [1] in the case of two colors, and later generalized by Burr, Nešetřil and Rödl [2] and by Rödl and Siggers [12].

2.2 Random hypergraphs

The random hypergraph $H^{(3)}(n,p)$ is the probability space of all labeled 3uniform hypergraphs on the vertex set [n] with each edge appearing with probability p independently of all other edges. The following lemma is crucial for the upper bound (2) in Theorem 1.1.

Lemma 2.2 Let $t \ge 4$ and $k \ge 2$ be integers. There is a 3-uniform hypergraph H on $n = k^{10kt^4}$ vertices, which can be written as an edge-disjoint union of k 3-uniform hypergraphs H_1, \ldots, H_k with the following properties:

- (i) for every $i \in [k]$, H_i contains no copies of $K_t^{(3)}$, and
- (ii) for any coloring c of the edges of the complete graph K_n with k colors there exists a color $x \in [k]$ and k sets S_1, \ldots, S_k that induce copies of K_{t-1} in color x under the coloring c such that $H_1[S_1] \cong \ldots \cong H_k[S_k] \cong K_{t-1}^{(3)}$.

The rough idea of the proof of Lemma 2.2 is to take k random hypergraphs $H'_1, \ldots, H'_k \sim H^{(3)}(n, p)$, with p being chosen appropriately. And then to show that, with positive probability, even after deleting those edges which appear in at least two hypergraphs H'_i or in a copy of $K_t^{(3)}$ inside some H'_i , we are left with k edge-disjoint hypergraphs H_1, \ldots, H_k that satisfy the conditions above.

For the details we refer the reader to the full version of our paper [3].

3 Proof of Theorem 1.1

Lower bound

Take a minimal k-Ramsey hypergraph \mathcal{H} for $K_t^{(3)}$ together with a vertex $v \in V(\mathcal{H})$ such that $\deg(v) = \delta(\mathcal{H}) = s_{k,1}(K_t^{(3)})$. We know that there exists a $K_t^{(3)}$ -free k-coloring of $\mathcal{H} \setminus \{v\}$ which cannot be extended to a $K_t^{(3)}$ -free k-coloring of \mathcal{H} . But this implies that $\operatorname{link}_{\mathcal{H}}(v) \longrightarrow (K_{t-1})_k$ holds, where

 $\operatorname{link}_{\mathcal{H}}(v)$ is the link of v, i.e., the graph consisting of all edges e such that $e \cup \{v\} \in E(\mathcal{H})$. Therefore: $s_{k,1}(K_t^{(3)}) = \operatorname{deg}(v) \geq \hat{r}_k(K_{t-1})$.

Upper bound

The proof of our upper bound on $s_{k,1}(K_t^{(3)})$ makes use of the BEL-gadgets. We fix a 3-uniform hypergraph H as asserted by Lemma 2.2 and a $K_t^{(3)}$ -free k-coloring c of E(H) which colors each of the subhypergraphs H_i monochromatically with color $i \in [k]$. Applying Theorem 2.1 for this choice of H and c, we obtain a new hypergraph \mathcal{H}' , that contains H as an induced subhypergraph, and we extend it further to a hypergraph \mathcal{H} by adding one new vertex v with the edges $\{v, a, b\}$ for all $\{a, b\} \in \binom{V(H)}{2}$, i.e. the link of v is $\operatorname{link}_{\mathcal{H}}(v) := \binom{V(H)}{2}$. So, $\deg_{\mathcal{H}}(v) = \binom{n}{2} < k^{20kt^4}$ holds. Owing to the assertions on \mathcal{H}' we have $\mathcal{H}' \not\longrightarrow (K_t^{(3)})_k$. On the other hand one can show $\mathcal{H} \longrightarrow (K_t^{(3)})_k$, which follows from Property (ii) of Lemma 2.2. Thus, we conclude that there needs to exist a minimal k-Ramsey hypergraph \mathcal{H}'' of $K_t^{(3)}$ with $\mathcal{H}' \subseteq \mathcal{H}'' \subseteq \mathcal{H}$ and $0 < \deg_{\mathcal{H}''}(v) < k^{20kt^4}$.

4 Proof of Theorem 1.2

The size of $s'_{2,2}$

For the proof of $s'_{2,2}(K_t^{(3)}) \ge (t-2)^2$ we take a minimal 2-Ramsey hypergraph H for $K_t^{(3)}$ together with two vertices u and $v \in V(H)$ such that $\deg_H(u,v) > 0$. We aim to show that $\deg_H(u,v) \ge (t-2)^2$, and thus, for contradiction, we assume the opposite. We then delete all edges containing both u and v in order to obtain a hypergraph H', which satisfies $H' \not\rightarrow \left(K_t^{(3)}\right)_2$. That is, we find a red-blue coloring c of E(H') which does not create a monochromatic copy of $K_t^{(3)}$. Now, let $N(u,v) := \{w \in V(H) : \{u,v,w\} \in E(H)\}$, $\deg_H(u,v) = |N(u,v)|$, and fix a longest sequence B_1, \ldots, B_k of vertex disjoint sets of size t-2 in N(u,v), such that both $B_i \cup \{u\}$ and $B_i \cup \{v\}$ span only blue edges under the coloring c in H'. By assumption on the codegree $\deg_H(u,v)$, we know that k < t-2. We then extend the coloring c to a coloring of E(H) as follows. For each edge $e = \{u, v, w\} \in E(H)$ with $w \in \bigcup B_i$ we set $c(e) = \operatorname{red}$, while for all other edges $e = \{u, v, w\} \in E(H)$ we have tat under this coloring there is no monochromatic copy of $K_t^{(3)}$ in H, contradicting $H \to (K_t^{(3)})_2$.

For the proof of $s'_{2,2}(K_t^{(3)}) \leq (t-2)^2$ we first provide a hypergraph H as follows. We choose $V(H) := [(t-2)^2] \cup \{a,b\}$ together with a partition

of $[(t-2)^2]$ into (t-2) equal-sized sets V_1, \ldots, V_{t-2} . Moreover, we define E(H) by taking all edges of the clique $K_{(t-2)^{2+2}}^{(3)}$ on the vertex set $\bigcup V_i \cup \{a, b\}$ and then deleting all edges that contain both a and b plus deleting all edges that cross exactly two different V_i s and contain neither a nor b. For this particular hypergraph, we then define a red-blue-coloring c as follows: the edges contained in $V_i \cup \{a\}$ and in $V_i \cup \{b\}$ for $i \in [t-2]$ are colored blue, while the other edges of H are colored red. By construction of H this coloring does not produce a monochromatic copy of $K_t^{(3)}$.

Now, applying Theorem 2.1 to H and c, we obtain a 3-uniform hypergraph \mathcal{H} which contains H as an induced subhypergraph such that $\mathcal{H} \not\rightarrow K_t^{(3)}$, $\deg_{\mathcal{H}}(a,b) = 0$ and such that any $K_t^{(3)}$ -free red-blue coloring ϕ of $E(\mathcal{H})$ agrees on E(H) with the coloring c up to permutation of the two colors. Extending this construction by adding to \mathcal{H} all $(t-2)^2$ edges $\{a, b, u\}$ where $u \in [(t-2)^2]$, we finally end up in a hypergraph \mathcal{H}' for which it is not difficult to see that $\mathcal{H}' \longrightarrow (K_t^{(3)})_2$. Thus, as $\mathcal{H} \not\rightarrow (K_t^{(3)})_2$, there needs to exist a minimal 2-Ramsey hypergraph \mathcal{H}'' of $K_t^{(3)}$ with $\mathcal{H} \subseteq \mathcal{H}'' \subseteq \mathcal{H}'$ and such that $0 < \deg_{\mathcal{H}''}(a,b) \leq (t-2)^2$, i.e., $s'_{2,2}(K_t^{(3)}) \leq (t-2)^2$.

Showing $s_{2,2}(K_t^{(3)}) = 0$.

Let us consider the previous construction of \mathcal{H}' again. As $s'_{2,2}(K_t^{(3)}) = (t-2)^2$ was proven, we know that any minimal 2-Ramsey subhypergraph of \mathcal{H}' for $K_t^{(3)}$ has to contain all $(t-2)^2$ edges that contain a and b, and in particular, any such minimal hypergraph \mathcal{H}'' needs to contain all vertices of the induced subhypergraph H. However, $\mathcal{H}''[V(H)] \not\longrightarrow (K_t^{(3)})_2$ holds, as can be seen by considering a red-blue-edge-coloring chosen uniformly at random and showing that the expected number of monochromatic copies of $K_t^{(3)}$ in $\mathcal{H}''[V(H)]$ is less than 1.

Thus, any minimal 2-Ramsey subhypergraph \mathcal{H}'' of \mathcal{H}' has to contain at least one further vertex $x \notin V(H)$. Then, since $|V(H)| = (t-2)^2 + 2 \ge 6$, it follows by Property (v) of Theorem 2.1 that there exists a vertex $y \in V(H)$ such that $0 = \deg_{\mathcal{H}'}(x, y) \ge \deg_{\mathcal{H}''}(x, y)$, i.e., $s_{2,2}(K_t^{(3)}) = 0$. \Box

For the details we refer the reader to the full version of our paper [3].

References

 Burr, S. A., P. Erdős and L. Lovász, On graphs of Ramsey type, Ars Combinatoria 1 (1976), pp. 167–190.

- [2] Burr, S. A., J. Nešetřil and V. Rödl, On the use of senders in generalized Ramsey theory for graphs, Discrete Math. 54 (1985), pp. 1–13.
- [3] Clemens, D. and Y. Person, Minimum degrees and codegrees of minimal Ramsey 3-uniform hypergraphs (2015), preprint, arXiv:1502.01147.
- [4] Conlon, D., A new upper bound for diagonal Ramsey numbers, Ann. of Math.
 (2) 170 (2009), pp. 941–960.
- [5] Conlon, D., J. Fox and B. Sudakov, Recent developments in graph Ramsey theory (2015), preprint, arXiv:1501.02474.
- [6] Erdős, P., R. J. Faudree, C. C. Rousseau and R. H. Schelp, *The size Ramsey number*, Periodica Mathematica Hungarica 9 (1978), pp. 145–161.
- [7] Fox, J., A. Grinshpun, A. Liebenau, Y. Person and T. Szabó, On the minimum degree of minimal Ramsey graphs for multiple colours, submitted, arXiv:1502.02881.
- [8] Fox, J., A. Grinshpun, A. Liebenau, Y. Person and T. Szabó, What is Ramseyequivalent to a clique?, J. Comb. Theory Ser. B 109 (2014), pp. 120–133.
- [9] Fox, J. and K. Lin, The minimum degree of Ramsey-minimal graphs, J. Graph Theory 54 (2006), pp. 167–177.
- [10] Graham, R. L., B. L. Rothschild and J. H. Spencer, "Ramsey theory," Wiley-Interscience Series in Discrete Mathematics and Optimization, John Wiley & Sons, Inc., New York, 1990, second edition, xii+196 pp., a Wiley-Interscience Publication.
- [11] Ramsey, F. P., On a problem in formal logic, Proc. Lond. Math. Soc. 30 (1930), pp. 264–286.
- [12] Rödl, V. and M. Siggers, On Ramsey minimal graphs, SIAM J. Discrete Math. 22 (2008), pp. 467–488.
- [13] Spencer, J., Ramsey's theorem—a new lower bound, J. Comb. Theory Ser. A 18 (1975), pp. 108–115.
- [14] Szabó, T., P. Zumstein and S. Zürcher, On the minimum degree of minimal Ramsey graphs, J. Graph Theory 64 (2010), pp. 150–164.