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Abstract

Nowadays sparse systems of equations occur frequently in science and engineering.
In this contribution we deal with sparse system that are common in cryptanaly-
sis. Given a cipher system, one converts it into a system of sparse equations, and
then the system is solved to retrieve either a key or a plaintext. Raddum and Se-
maev proposed a new method for solving such sparse systems. It turns out that
a combinatorial MaxMinMax problem provides bounds on the case where the av-
erage computational complexity of their method is maximum. We focus on this
MaxMinMax problem and present results over finite and infinite fields.
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1 Introduction

Sparse objects such as sparse matrices and sparse systems of (non-)linear
equations occur frequently in science or engineering. Nowadays sparse systems
are frequently studied in algebraic cryptoanalysis. First, given a cipher system,
one converts it into a system of equations. Second, the system of equations
is solved to retrieve either a key or a plaintext. As pointed out in [1], this
system of equations will be sparse, since efficient implementations of real-word
systems require a low gate count.
There are plenty of papers on methods for solving a sparse system of

equations. In [4] a so called Gluing Algorithm was designed to solve such
systems over a finite field GF (q). If the set Sk of solutions of the first k
equations together with the next equation fk+1 = 0 is given then the algorithm
constructs the set Sk+1. It is shown there that the average complexity of finding
all solutions to the original system is O(mqmax|∪k1Xj|−k), where m is the total
number of equations, and ∪k1Xj is the set of all unknowns actively occurring
in the first k equations. Clearly, the complexity of finding all solutions to the
system by the Gluing Algorithm depends on the order of equations. Hence one
is interested to find a permutation π that minimizes the average complexity,
and also to describe the worst case scenario, i.e., the system of equations for
which the average complexity is maximum. Therefore in [5] Semaev suggested
to study the following combinatorial MaxMinMax problem.
Let Sn,m,c be the family of all collections of sets X ={X1, ..., Xm}, where

the Xi are subsets of an underlying n-set X, and |Xi| ≤ c holds for all i ∈ [m] ;
we allow that some set may occur in X more than once. Then we define

fc(n,m) := maxX
min
π

max
1≤k≤m

(

∣∣∣∣∣
k⋃
i=1

Xπ(i)

∣∣∣∣∣− k) (1)

where the minimum runs over all permutations π on [m], and the maximum
is taken over all families X in Sn,m,c.
In [2] the authors confined themselves to the case |Xi| ≤ 3 for all i ∈ [m].

It was shown there that, for n ≥ 2 and all m, f2(n,m) equals the maximum
number of non-trivial components in a simple graph on n vertices with m
edges; in particular, f2(n,m) = 1 form ≥ n−1. The main result of that paper
claims that f3(n, n) grows linearly. More precisely, the following estimates are
valid.



Theorem 1.1 For all n sufficiently large, f3(n, n) ≥ n
12.2137

holds, while
f3(n, n) ≤

⌈
n
4

⌉
+ 2 for all n ≥ 3.

Later, an asymptotically better upper bound was proved in [5]; moreover,
the proof is algorithmic.

Theorem 1.2 For all n, f3(n, n) ≤ n
5.7883

+ 1 + 2 log2 n.

As a corollary we get: Let X be fixed. If |Xi| ≤ 3, m = n, then the average
complexity of finding all solutions in GF (q) to polynomial equation system
fi(Xi) = 0 (1 ≤ i ≤ m) is at most q n

5.7883
+O(logn) for arbitrary X and q.

In [3] a new method for solving systems of algebraic equations common in
cryptanalysis has been proposed. This method differs from the others in that
the equations are not represented as multivariate polynomials, but as a system
of Multiple Right Hand Sides (MRHS) linear equations. The results overcome
significantly what was previously achieved with Gröbner Basis related algo-
rithms. We point out that equations describing the Advanced Encryption
Standard (AES) can be expressed in MRHS form as well. AES is likely the
most commonly used symmetric-key cipher; AES became effective as a fed-
eral government standard on May 26, 2002 after approval by the Secretary of
Commerce. It is the first publicly accessible and open cipher approved by the
National Security Agency (NSA) for top secret information when used in an
NSA approved cryptographic module.
Let X be a column n-vector over GF (q). Then MRHS is a system

AiX ∈ {bi1 , . . . , bisi}, i = 1, . . . ,m, (2)

where the Ai are matrices over Fq of size ki×n and of rank ki, and the bij are
column vectors of length ki. An X = X0 is a solution to (2) if it satisfies all
inclusions in (2). Methods to solve such equations were introduced in [3] as
well.
One of the main goals of our paper is to get asymptotic bounds on the

complexity of solving (2). As noted by Semaev, such bounds can be obtained
by studying a generalisation of the combinatorial problem described in (2).
The idea is based on the following statement that enables to present the given
cryptographic problem in combinatorial terms. Let rk denote the rank of all
row-vectors in A1, A2, . . . , Ak.

Theorem 1.3 Suppose that the right hand side column vectors in (2) are
zeros of a uniformly random polynomial over GF (q) of degree < q in each



variable(in other words, each particular column vector appears independently
with probability 1/q). Then the average complexity of solving (2) is at most

mmax
k
qrk−k.

So, as in the original problem, the complexity of the solution depends on
the order of matrices Ai. Hence, the complexity of the problem is in fact a
generalisation of the function fc(n,m) defined in (1), namely the size of the
union of the first k sets is replaced by the rank of vectors belonging to the
first k matrices. Formally, let Sn,m,c,V be the family of all collections of sets of
vectors X ={X1, ..., Xm} in an n-dimensional vector space V, over GF (q) or
over real numbers, under the restriction |Xi| ≤ c for all i ∈ [m]. We set

Fc(n,m) := maxX
min
π

max
1≤k≤m

(rank

(
k⋃
i=1

Xπ(i)

)
− k), (3)

where the minimum runs over all permutations π on [m], and the maximum
is taken over all families X in Sn,m,c,V .
Although functions fc(n,m) and Fc(n,m) are defined in a similar way, it

turns out that their behavior is dramatically different.
Clearly, fc(n, n) ≤ n− n

c
is a trivial upper bound. This bound is attained

for some vector spaces. In the case of the n-dimensional space Rn over the real
numbers the tightness of this bound follows from the fact that Rn contains
infinitely many vectors such that any n of them are independent.
We now focus on finite fields that are important for the original crypto-

graphic setting of the problem. As mentioned above, f2(n,m) = 1 holds for all
m ≥ n. It turns out that even the case c = 2 constitutes a challenge for most
vector spaces V . Surprisingly, using Reed-Solomon codes, the trivial upper
bound can be attained even for some finite fields.

Theorem 1.4 Let GF (q) be a finite field, where q ≥ 2n. Then for any n we
have F2(n, n) = n

2
.

At the end we focus on the binary field, the field most important for
cryptographic application. We start with an upper bound.

Theorem 1.5 There is an absolute constant c such that F2(n, n) ≤ n
2
−c log n.

As to a lower bound we state first a linear one based on Gilbert-Varshamov
type asymptotic lower bound for linear binary code size.

Theorem 1.6 For all large enough n, F2(n, n) ≥ n
9.0886

.



At the moment we do not have a conjecture about the asymptotic rate
of growth of the function F2(n, n). To indicate the difficulty of the problem
we present a family exhibiting that a linear lower bound on F2(n, n) can be
obtained even by a very special system.

Theorem 1.7 For sufficiently large n , there is a positive constant c and a
family X ={X1, ..., Xn} of binary vectors, where for all i ∈ [n], |Xi| = 2, and
Xi contains a unit vector and a vector with exactly two non-zero coordinates,
such that

min
π
max
1≤k≤n

(rank

(
k⋃
i=1

Xπ(i)

)
− k) ≥ cn,

where the minimum runs over all permutations on [n].
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