Available online at www.sciencedirect.com

H H Electronic Notes in
ScienceDirect DISCRETE
Fx . MATHEMATICS
ELSEVIER

www.elsevier.com/locate/endm

An application of Combinatorics in
Cryptography

Peter Horak

School of Interdisciplinary Arts € Sciences
University of Washington
Tacoma, USA

Igor Semaev

Department of Informatics
University of Bergen
Bergen, Norway

Zsolt Tuza

Alfréd Rényi Institute of Mathematics, Hungarian Academy of Sciences
University of Pannonia
Veszprém, Hungary

Abstract

Nowadays sparse systems of equations occur frequently in science and engineering.
In this contribution we deal with sparse system that are common in cryptanaly-
sis. Given a cipher system, one converts it into a system of sparse equations, and
then the system is solved to retrieve either a key or a plaintext. Raddum and Se-
maev proposed a new method for solving such sparse systems. It turns out that
a combinatorial MaxMinMax problem provides bounds on the case where the av-
erage computational complexity of their method is maximum. We focus on this
MaxMinMax problem and present results over finite and infinite fields.
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1 Introduction

Sparse objects such as sparse matrices and sparse systems of (non-)linear
equations occur frequently in science or engineering. Nowadays sparse systems
are frequently studied in algebraic cryptoanalysis. First, given a cipher system,
one converts it into a system of equations. Second, the system of equations
is solved to retrieve either a key or a plaintext. As pointed out in [1], this
system of equations will be sparse, since efficient implementations of real-word
systems require a low gate count.

There are plenty of papers on methods for solving a sparse system of
equations. In [4] a so called Gluing Algorithm was designed to solve such
systems over a finite field GF(q). If the set Sy of solutions of the first k
equations together with the next equation fi,1 = 0 is given then the algorithm
constructs the set Sk 1. It is shown there that the average complexity of finding
all solutions to the original system is O(mqmax,u’ij ’*k), where m is the total
number of equations, and U¥X; is the set of all unknowns actively occurring
in the first £ equations. Clearly, the complexity of finding all solutions to the
system by the Gluing Algorithm depends on the order of equations. Hence one
is interested to find a permutation 7 that minimizes the average complexity,
and also to describe the worst case scenario, i.e., the system of equations for
which the average complexity is maximum. Therefore in [5] Semaev suggested
to study the following combinatorial MaxMinMax problem.

Let S, be the family of all collections of sets X ={Xj, ..., X,,,}, where
the X; are subsets of an underlying n-set X, and | X;| < ¢ holds for all i € [m];
we allow that some set may occur in X more than once. Then we define

UXeo| = 0) M

fe(n,m) := Max min 12}%}7{71(

where the minimum runs over all permutations 7 on [m], and the maximum
is taken over all families X' in S, ,,, c.

In [2] the authors confined themselves to the case | X;| < 3 for all i € [m)].
It was shown there that, for n > 2 and all m, fy(n,m) equals the maximum
number of non-trivial components in a simple graph on n vertices with m
edges; in particular, fo(n, m) = 1 for m > n—1. The main result of that paper
claims that f3(n,n) grows linearly. More precisely, the following estimates are
valid.



Theorem 1.1 For all n sufficiently large, fs(n,n) >
fs(n,n) < (ﬂ + 2 for alln > 3.

holds, while
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Later, an asymptotically better upper bound was proved in [5]; moreover,
the proof is algorithmic.

Theorem 1.2 For alln, f3(n,n) < s=t= + 14 2logyn.

As a corollary we get: Let X' be fixed. If | X;| < 3, m = n, then the average
complexity of finding all solutions in GF'(q) to polynomial equation system
fi(Xi) =0(1 <i < m)is at most g57sss TOUosn) for arbitrary X' and q.

In [3] a new method for solving systems of algebraic equations common in
cryptanalysis has been proposed. This method differs from the others in that
the equations are not represented as multivariate polynomials, but as a system
of Multiple Right Hand Sides (MRHS) linear equations. The results overcome
significantly what was previously achieved with Grobner Basis related algo-
rithms. We point out that equations describing the Advanced Encryption
Standard (AES) can be expressed in MRHS form as well. AES is likely the
most commonly used symmetric-key cipher; AES became effective as a fed-
eral government standard on May 26, 2002 after approval by the Secretary of
Commerce. It is the first publicly accessible and open cipher approved by the
National Security Agency (NSA) for top secret information when used in an
NSA approved cryptographic module.

Let X be a column n-vector over GF(q). Then MRHS is a system

AiXE{bil,...,bisi}, Z':l,...,m, (2)

where the A; are matrices over Fj, of size k; x n and of rank k;, and the b;; are
column vectors of length k;. An X = X is a solution to (2) if it satisfies all
inclusions in (2). Methods to solve such equations were introduced in [3] as
well.

One of the main goals of our paper is to get asymptotic bounds on the
complexity of solving (2). As noted by Semaev, such bounds can be obtained
by studying a generalisation of the combinatorial problem described in (2).
The idea is based on the following statement that enables to present the given
cryptographic problem in combinatorial terms. Let r; denote the rank of all
row-vectors in Ay, As, ..., Ap.

Theorem 1.3 Suppose that the right hand side column vectors in (2) are
zeros of a uniformly random polynomial over GF(q) of degree < q in each



variable(in other words, each particular column vector appears independently
with probability 1/q). Then the average complexity of solving (2) is at most

mmax ¢ ",
k

So, as in the original problem, the complexity of the solution depends on
the order of matrices A;. Hence, the complexity of the problem is in fact a
generalisation of the function f.(n,m) defined in (1), namely the size of the
union of the first k sets is replaced by the rank of vectors belonging to the
first £ matrices. Formally, let S,, ,,, . be the family of all collections of sets of
vectors X ={X1,..., X;,} in an n-dimensional vector space V, over GF(q) or
over real numbers, under the restriction | X;| < ¢ for all ¢ € [m]. We set

k
F.(n,m) := max min 1r<r}ga<>§n(rank(HXﬂ(i)> — k), (3)
where the minimum runs over all permutations 7w on [m], and the maximum
is taken over all families X in S, , v

Although functions f.(n,m) and F.(n,m) are defined in a similar way, it
turns out that their behavior is dramatically different.

Clearly, f.(n,n) <n — 2 is a trivial upper bound. This bound is attained
for some vector spaces. In the case of the n-dimensional space R™ over the real
numbers the tightness of this bound follows from the fact that R™ contains
infinitely many vectors such that any n of them are independent.

We now focus on finite fields that are important for the original crypto-
graphic setting of the problem. As mentioned above, f3(n, m) = 1 holds for all
m > n. It turns out that even the case ¢ = 2 constitutes a challenge for most
vector spaces V. Surprisingly, using Reed-Solomon codes, the trivial upper
bound can be attained even for some finite fields.

Theorem 1.4 Let GF(q) be a finite field, where ¢ > 2n. Then for any n we

have F3(n,n) = 3.

At the end we focus on the binary field, the field most important for
cryptographic application. We start with an upper bound.

Theorem 1.5 There is an absolute constant ¢ such that F>(n,n) < §—clogn.

As to a lower bound we state first a linear one based on Gilbert-Varshamov
type asymptotic lower bound for linear binary code size.

Theorem 1.6 For all large enough n, F>(n,n) > 5o



At the moment we do not have a conjecture about the asymptotic rate
of growth of the function Fy(n,n). To indicate the difficulty of the problem
we present a family exhibiting that a linear lower bound on Fy(n,n) can be
obtained even by a very special system.

Theorem 1.7 For sufficiently large n, there is a positive constant ¢ and a
family X ={X1, ..., X,,} of binary vectors, where for all i € [n], | X;| =2, and
X; contains a unit vector and a vector with exactly two non-zero coordinates,
such that

min max rank(U X ) ) > cn,
m 1<k<n
where the minimum runs over all permutations on [n].
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