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Abstract

Let F be a strictly k-balanced k-uniform hypergraph with e(F ) ≥ |F | − k + 1 and
maximum co-degree at least two. The random greedy F -free process constructs a
maximal F -free hypergraph as follows. Consider a random ordering of the hyper-
edges of the complete k-uniform hypergraph Kk

n on n vertices. Start with the empty
hypergraph on n vertices. Successively consider the hyperedges e of Kk

n in the given
ordering and add e to the existing hypergraph provided that e does not create a
copy of F . We show that asymptotically almost surely this process terminates at
a hypergraph with Õ(nk−(|F |−k)/(e(F )−1)) hyperedges. This is best possible up to
logarithmic factors.
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1 Introduction

1.1 Results

Fix a k-uniform hypergraph F . We study the following random greedy process,
which constructs a maximal F -free k-uniform hypergraph. Assign a birthtime
which is uniformly distributed in [0, 1] to each hyperedge of the complete k-
uniform hypergraph Kk

n on n vertices. Start with the empty hypergraph on
n vertices at time p = 0. Increase p and each time that a new hyperedge is
born, add it to the hypergraph provided that it does not create a copy of F
(edges with equal birthtime are added in any order). Denote the resulting
hypergraph at time p by Rn,p.

The random greedy graph process (i.e. the case when k = 2) has been
studied for many graphs. The initial motivation (see for example [8]) was to
study the Ramsey number R(3, t). Indeed, the best current lower bounds on
R(3, t) were obtained via the study of the triangle-free process ([5], [10]). Os-
thus and Taraz [11] gave an upper bound on the number of edges in the graph
Rn,1 when F is strictly 2-balanced, showing that a.a.s. Rn,1 has maximum
degree O(n1−(|F |−2)/(e(F )−1)(log n)1/(Δ(F )−1)). (Here a.a.s. stands for ‘asymp-
totically almost surely’, i.e. for the property that an event occurs with prob-
ability tending to one as n tends to infinity.) Results for the cases when
F = C4 and F = K4 were obtained independently by Bollobás and Rior-
dan [7]. Bohman and Keevash [4] showed that a.a.s. Rn,1 has minimum de-
gree Ω(n1−(|F |−2)/(e(F )−1)(log n)1/(e(F )−1)) whenever F is strictly 2-balanced and
conjectured that this gives the correct order of magnitude. Improved upper
bounds have been obtained for some graphs. For instance, the number of edges
has been determined asymptotically when F is a cycle ([3], [5], [10], [12], [14])
and when F = K4 ([15], [16]). Picollelli [13] determined asymptotically the
number of edges when F is a diamond, i.e. the graph obtained by removing
one edge from K4. Note that this graph is not strictly 2-balanced.

Much less is known about the process when F is a k-uniform hypergraph
and k ≥ 3. The only known upper bound is due to Bohman, Mubayi and
Picollelli [6], who studied the F -free process when F is a k-uniform generali-
sation of a graph triangle (with an application to certain Ramsey numbers).
We obtain a generalisation of the upper bound in [11] to strictly k-balanced
hypergraphs. Here we say that a k-uniform hypergraph F is strictly k-balanced
if |F | ≥ k + 1 and for all proper subgraphs F ′ � F with |F ′| ≥ k + 1 we have

e(F )− 1

|F | − k
>

e(F ′)− 1

|F ′| − k
.



We also need the following definition. Given a hypergraph H and i ∈ N, we
define the maximum i-degree of H by

Δi(H) := max{dH(U) : U ⊆ V (H), |U | = i},

where dH(U) is the number of hyperedges in H containing U .

Theorem 1.1 Let k ∈ N be such that k ≥ 2. Let F be a strictly k-balanced

k-uniform hypergraph which has v vertices and h ≥ v − k + 1 hyperedges.

Suppose Δk−1(F ) ≥ 2. Then there exists a constant c such that a.a.s.

Δk−1(Rn,1) < t where t := cn1− v−k

h−1 (log n)
3

Δk−1(F )−1
− 1

h−1 . (1)

In particular, a.a.s. Rn,1 has at most tnk−1 hyperedges.

Note that Theorem 1.1 applies, for example, to all k-uniform cliques Kk
v

on v ≥ k + 1 vertices and more generally to all balanced complete �-partite
k-uniform hypergraphs with � ≥ k and more than k vertices. Theorem 1.1
also applies when F is a k-uniform tight cycle. Loose cycles, however, do not
satisfy the co-degree condition in Theorem 1.1. We conjecture that the upper
bound on the number of hyperedges holds in this case also.

Bennett and Bohman [2] studied a random greedy independent set algo-
rithm in certain quasi-random hypergraphs. This algorithm finds a maximal
independent set by choosing vertices uniformly at random and adding them
to the existing set provided they do not create a hyperedge. Note that we can
define an e(F )-regular hypergraph H whose vertex set is E(Kk

n) and whose
hyperedges correspond to all copies of F in Kk

n. In this case, the random
greedy independent set process on H is exactly the F -free process. Their re-
sult can be applied in the context of the F -free process to show that if F is
a strictly k-balanced k-uniform hypergraph and every vertex of F lies in at
least two hyperedges, then a.a.s. Rn,1 has Ω(n

k−(|F |−k)/(e(F )−1)(log n)1/(e(F )−1))
hyperedges. Up to logarithmic factors, this matches the upper bound given
in Theorem 1.1.

1.2 An open question

There are many natural open questions related to the random greedy F -free
process. One of which would be to generalise Theorem 1.1 by finding an upper
bound on the number of steps in the random greedy independent set process
studied in [2].



The random greedy independent set process can also be applied to study
arithmetic progression free sets. Suppose k, n ∈ N. The kAP-free process
generates a subset I of Zn which does not contain an arithmetic progression
of length k as follows. The elements of Zn are ordered uniformly at random.
Each is then, in turn, added to the set I if it does not create a k term arithmetic
progression. So this is another instance of the random greedy independent set
algorithm, this time on the hypergraph with vertex set Zn whose hyperedges
are all arithmetic progressions of length k. When n is prime, Bennett and
Bohman [2] showed that a.a.s. the kAP-free process generates a kAP-free
set I of size Ω(n(k−2)/(k−1)(log n)1/(k−1)). It would be interesting to obtain a
corresponding upper bound on I. (Note that an upper bound on the number
of steps in the random greedy independent set process would imply an upper
bound for the kAP-free process.)

1.3 Sketch of the argument

Rather than studying the random greedy process itself, we are able to prove
Theorem 1.1 by obtaining precise information about the random binomial hy-
pergraph Hn,p. (This idea was first used in [11].) More precisely, write Hn,p

for the random binomial k-uniform hypergraph on n vertices with hyperedge
probability p, i.e., each hyperedge is included in Hn,p with probability p, inde-
pendently of all other hyperedges. We write H−

n,p for the hypergraph formed
by removing all copies of F from Hn,p. Note that Hn,p can also be viewed as
the random hypergraph consisting of all hyperedges with birthtime at most
p. Thus, for all p ∈ [0, 1] we have H−

n,p ⊆ Rn,p ⊆ Rn,1. We will always assume
that Kk

n, Hn,p, H
−
n,p and Rn,p use the vertex set [n].

The proof of Theorem 1.1 proceeds as follows. We first identify the largest
point p where we can still use Hn,p to approximate the behaviour of H−

n,p

(i.e. for this p, only a small proportion of edges of Hn,p lie in a copy of F ).

Now let U be a set of k−1 vertices in F such that dF (U) = Δk−1(F ). Let F̂ be
the subgraph of F obtained by deleting all those hyperedges which contain U .
Let t be as in (1). Suppose for a contradiction that there exists a (k − 1)-
set V of degree t in Rn,1 and let T be the neighbourhood of V in Rn,1. We

will show that in this case we would almost certainly find a copy α of F̂ in
H−

n,p[T ∪ V ] which maps U to V . Since H−
n,p ⊆ Rn,1, α would also be a copy

of F̂ in Rn,1[T ∪ V ] which maps U to V . But this actually yields a copy of
F in Rn,1, a contradiction. So a.a.s. Δk−1(Rn,1) < t. It is perhaps surprising
that for our analysis the order of hyperedges added after this critical point p
is irrelevant.
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[9] Erdős P. and P. Tetali, Representation of integers as the sum of k terms,

Random Structures Algorithms 1 (1990), 245–261.

[10] Fiz Pontiveros G., S. Griffiths and R. Morris, The triangle-free process and

R(3, k), arXiv:1302.6279, (2013).

[11] Osthus D. and A. Taraz, Random maximal H-free graphs, Random Structures
Algorithms 18 (2001), 61–82.

[12] Picollelli M., The final size of the C�-free process, SIAM Journal on Discrete
Math. 28(3) (2014), 1276–1305.

[13] Picollelli M., The diamond-free process, Random Structures Algorithms 45
(2014), 513-551.

[14] Warnke L., The C�-free process, Random Structures Algorithms 44 (2014),
490–526.

[15] Warnke L., When does the K4-free process stop?, Random Structures
Algorithms 44 (2014), 355–397.

[16] Wolfovitz G., The K4-free process, arXiv:1008.4044, (2010).


	Introduction
	Results
	An open question
	Sketch of the argument

	References

