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Abstract

We show that if T is a strongly 109k6 log(2k)-connected tournament, there exists
a partition A,B of V (T ) such that each of T [A], T [B] and T [A,B] is strongly
k-connected. This provides tournament analogues of two partition conjectures of
Thomassen regarding highly connected graphs.
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1 Introduction

1.1 Partitions of highly connected tournaments

The study of graph partitions where the resulting subgraphs inherit the prop-
erties of the original graph has a long history with some surprises and numer-
ous open problems, see e.g. the survey [7]. For example, a classical result of
Hajnal [1] and Thomassen [9] implies that for every k there exists an integer
f(k) such that every f(k)-connected graph has a vertex partition into sets A
and B so that both A and B induce k-connected graphs. A related conjecture
of Thomassen [12] states that for every k there is an f(k) such that every
f(k)-connected graph G has a bipartition A,B so that the spanning bipartite
graph G[A,B] is k-connected. It is not hard to show that one cannot achieve
both the above properties simultaneously in a highly connected graph. On
the other hand, our main result states that for tournaments T , we can find a
single partition which achieves both the above properties. Below we denote
by T [A,B] the bipartite subdigraph of T which consists of all edges between
A and B but no others.

Theorem 1.1 Let T be a tournament and k ∈ N. If T is strongly 109k6 log(2k)-
connected, there exists a partition V1, V2 of V (T ) such that each of T [V1], T [V2]
and T [V1, V2] is strongly k-connected.

We have made no attempt to optimize the bound on the connectivity in
Theorem 1.1. (It would be straightforward to obtain minor improvements
at the expense of more careful calculations.) On the other hand, it would
be interesting to obtain the correct order of magnitude for the connectivity
bound.

Kühn, Osthus and Townsend [4] earlier proved the weaker result that every
strongly 108k6 log(4k)-connected tournament T has a vertex partition V1, V2

such that T [V1] and T [V2] are both strongly k-connected (with some control
over the sizes of V1 and V2). This proved a conjecture of Thomassen. [4] raised
the question whether this can be extended to digraphs.

Our proof of Theorem 1.1 develops ideas in [4]. These in turn are based
on the concept of robust linkage structures which were introduced in [2] to
prove a conjecture of Thomassen on edge-disjoint Hamilton cycles in highly
connected tournaments. Further (asymptotically optimal) results leading on
from these approaches were obtained by Pokrovskiy [5,6].



1.2 Subdivisions and linkages

The famous Lovász path removal conjecture states that for every k ∈ N there
exists g(k) ∈ N such that for every pair x, y of vertices in a g(k)-connected
graphG we can find an induced path P joining x and y in G for which G\V (P )
is k-connected. In [11], Thomassen proved a tournament version of this con-
jecture. We generalize his argument to observe that highly connected tour-
naments contain a non-separating subdivision of any given digraph H (with
prescribed branch vertices). The case when d = 2 and m = 1 corresponds to
the result in [11].

Theorem 1.2 Let k, d,m ∈ N. Suppose that T is a strongly (k +m(d+ 2))-
connected tournament, that D is a set of d vertices in T , that H is a digraph
on d vertices and m edges and that φ is a bijection from V (H) to D. Then T
contains a subdivision H∗ of H such that

(i) for each h ∈ V (H) the branch vertex of H∗ corresponding to h is φ(h),

(ii) T \ V (H∗) is strongly k-connected,

(iii) for every edge e of H, the path Pe of H∗ corresponding to e is backwards-
transitive.

Here a directed path P = x1 . . . xt in a tournament T is backwards-transitive
if xixj is an edge of T whenever i ≥ j + 2. The graph version of Theo-
rem 1.2 is still open and would follow from the following beautiful conjecture
of Thomassen [10].

Conjecture 1.3 For every k ∈ N there exists f(k) ∈ N such that if G is a
f(k)-connected graph and M ⊆ V (G) consists of k vertices then there exists
a partition V1, V2 of V (G) such that M ⊆ V1, both G[V1] and G[V2] are k-
connected, and each vertex in V1 has at least k neighbours in V2.

The case |M | = 2 would already imply the path removal conjecture. The
case M = ∅ was proved in [3]. It implies the existence of non-separating
subdivisions (without prescribed branch vertices) in highly connected graphs.
Clearly, Theorem 1.1 implies a tournament version of Conjecture 1.3.

The next theorem guarantees a spanning linkage in a highly connected
tournament. It was proved by Thomassen [11] with a super-exponential bound
on the connectivity. He asked whether a linear bound suffices. We reduce the
bound to a polynomial one. Pokrovskiy [5] showed that a linear bound suffices
to guarantee a linkage if we do not require it to be spanning.

Theorem 1.4 Let k ∈ N. Suppose that T is a strongly (k2 + 3k)-connected



tournament and that x1, . . . , xk, y1, . . . , yk are vertices in T such that xi �= yi
for all i ∈ [k] and all the pairs (xi, yi) are distinct. Then T contains pairwise
internally disjoint paths Pi from xi to yi such that {x1, . . . , xk, y1, . . . , yk} ∩
V (Pi) = {xi, yi} and V (T ) =

⋃k

i=1
V (Pi).

1.3 Sketch of the argument

We now give a brief idea of the argument in the proof of Theorem 1.1 under
the much stronger assumptions that k � log |T |. In this case we can find 12k
disjoint sets A1, . . . , A6k, B1, . . . , B6k ⊆ V (T ) satisfying the following.

1) each Ai and each Bi has size o(k),

2) each Ai induces a transitive subtournament of T with the source ai,

3) each Bi induces a transitive subtournament of T with the sink bi,

4) Ai \ {ai} is out-dominating and Bi \ {bi} is in-dominating.

(Here we say that a set X ⊆ V (T ) is out-dominating if every vertex v ∈
V (T )\X has an in-neighbour in X. In-dominating sets are defined similarly.)
We now use a result Pokrovskiy [5] which implies that T is (109k6 log(2k)/452)-
linked to find, for each i ∈ [6k], a path Pi from bi to ai such that all the Pi

are pairwise disjoint. For each i ∈ [6] we let Ii := {(i − 1)k + 1, · · · , ik} and
assign vertices to V1 and V2 in the following way:

a) Ai ∪ Bi ⊆ V1 for i ∈ I1 and Aj ∪ Bj ⊆ V2 for j ∈ I2,

b) (Ai \ {ai}) ∪ (Bj \ {bj}) ⊆ V1, ai, bj ∈ V2 for all i ∈ I4 ∪ I5, j ∈ I4 ∪ I6,

c) (Ai \ {ai}) ∪ (Bj \ {bj}) ⊆ V2, ai, bj ∈ V1 for all i ∈ I3 ∪ I6, j ∈ I3 ∪ I5,

d) V (Pi) ⊆ V1, V (Pj) ⊂ V2 for all i ∈ I1, j ∈ I2,

e) Pi is a path in T [V1, V2] for all i ∈ I3 ∪ I4 ∪ I5 ∪ I6,

f) we assign the remaining vertices arbitrarily.

(When choosing the paths Pi for i ∈ I3 ∪ . . .∪ I6, we will ensure that they
have the correct parity in order to guarantee that we can assign the interior
vertices on these paths to V1 and V2 in such a way that e) holds.) It is now easy
to see that each of T [V1],T [V2] and T [V1, V2] is strongly k-connected. Indeed,
consider some F ⊆ V1 with |F | < k. So there exists i ∈ [k] such that F avoids
Ai ∪Bi ∪ V (Pi). Consider any x, y ∈ V1 \ F . Since Bi is in-dominating, there
is an edge from x to some x′ ∈ Bi. Similarly, since Ai is out-dominating, there
is an edge from some y′ ∈ Ai to y. Then Pi, xx

′, y′y together with the edge
from x′ to the sink bi of Bi and the edge from the source ai of Ai to y′ form
a path in T [V1 \ F ] from x to y, as required. A similar argument shows that
both T [V1, V2], T [V2] are k-connected too.



In general, the problem with this approach is that we cannot guarantee
such (small) dominating sets when k is bounded. However, we can still find
small sets which dominate a large proportion of V (T ). With some new ideas
one can use these to ensure strong k-connectivity of both T [V1], T [V2] and
T [V1, V2].
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