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Abstract

Szemerédi’s regularity lemma is a fundamental tool in extremal graph theory, theo-
retical computer science and combinatorial number theory. Lovász and Szegedy [7]
gave a Hilbert space interpretation of the lemma and an interpretation in terms of
compactness of the space of graph limits. In this paper we prove several compact-
ness results in a Banach space setting, generalising results of Lovász and Szegedy
[7] as well as a result of Borgs, Chayes, Cohn and Zhao [2].
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1 Introduction

1.1 The regularity lemma

Szemerédi’s regularity lemma is a fundamental tool in extremal graph theory,
theoretical computer science and combinatorial number theory. The lemma
has many interpretations, variations and extensions.
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Very roughly the lemma says something of the form: for each ε > 0 there
exists k ∈ N such that the vertex set of any graph can be partitioned into at
most k parts, such that for ‘almost’ all pairs of parts the edges between that
pair of parts behaves ‘almost’ like a random bipartite graph, where ‘almost’
depends on ε. The weak regularity lemma of Frieze and Kannan [4] weakens
the requirements of the partition in the regularity lemma and measures the
error of approximation with respect to the cut norm. From the perspective
of the adjacency matrix of a graph this means that one approximates this
matrix with a bounded sum of cut matrices (in particular, this gives a low
rank approximation) such that their difference is small with respect to the cut
norm. This is exactly the point of view we take in this paper: we want to
find various types of low rank approximations to matrices and tensors, when
measured in a particular norm.

Our work is inspired by the work of Lovász and Szegedy [7] and Borgs,
Chayes, Cohn and Zhao [2] relating the compactness of the space of graph
limits to Szemerédi’s regularity lemma. We refer to the book by Lovász [5] for
more details on graph limits. In [6] Lovász and Szegedy used the weak version
of the regularity lemma [4] to assign a limit object to a convergent sequence
of dense graphs. This limit object is no longer a graph, but a symmetric
measurable function W : [0, 1]2 → [0, 1], called a graphon. In [7] Lovász and
Szegedy showed that the space of graphons, equipped with the cut metric is
compact, interpreting this result as an analytical form of the regularity lemma.
Their compactness result implies various kinds of regularity lemmas varying
from weak to very strong. It has recently been extended by Borgs, Chayes,
Cohn and Zhao [2] to the space of R-valued functionsW with bounded p-norm,
the Lp-graphon space (for any fixed p > 1).

1.2 Compactness

We will now describe the compactness of the graphon space, which is denoted
by W , more precisely, after which we state the main result of the present
paper.

Let W : [0, 1]2 → R. Consider for p, q ∈ [1,∞], W as a kernel operator
W : Lp([0, 1]) → Lq([0, 1]). The p �→ q-operator norm is defined by

‖W‖p �→q = sup
‖f‖p=1

‖Wf‖q = sup
‖f‖p=1,‖g‖q∗=1

∫

[0,1]2

W (x, y)g(x)f(y)dλ,

where ‖·‖s denotes the s-norm on the space Ls([0, 1]) and where q∗ = q/(q−1).
The norm ‖ · ‖∞�→1 is equivalent to the cut norm. Call W ∼ W ′ if for each



ε > 0 there exists a measure preserving bijection τ : [0, 1] → [0, 1] such that
‖W − τW ′‖∞�→1 ≤ ε. Then the result of Lovász and Szegedy [7] can be stated
as follows:

the space (W , ‖ · ‖∞�→1)/ ∼ is compact.(1)

The result of Borgs, Chayes, Cohn and Zhao [2] then says that we can replace
W with the symmetric functions in Lp([0, 1]2) of norm at most 1 for any fixed
p > 1, which is denoted by B(Lp([0, 1]2). We show that in (1) we can also
replace the norm ‖ · ‖∞�→1 by the norm ‖ · ‖q �→ q

q−1
:

Theorem 1.1 Let p ∈ (1,∞] and let q be such that q > p
p−1

. Then the space

(B(Lp([0, 1]2)), ‖ · ‖q �→ q
q−1

)/ ∼ is compact.

Here W ∼ W ′ if for each ε > 0 there exists a measure preserving bijection
τ : [0, 1] → [0, 1] such that ‖W − τW ′‖q �→ q

q−1
≤ ε. Note that the theorem fails

to be true when p = q
q−1

.

We derive Theorem 1.1 from a general result about compact orbit spaces
in Banach spaces, replacing in (1) the space W by a weakly compact subset
of a Banach space X, the relation ∼ by an equivalence relation obtained from
a subgroup of the group of automorphisms of X and the norm ‖ · ‖∞�→1 by an
operator-type norm, cf. Theorem 2.1.

Our method is based on work of the author and Schrijver [11], in which the
compactness result of Lovász and Szegedy was extended to a general Hilbert
space setting, putting emphasis on the possibility of using different norms than
the cut norm and the use of groups and moreover using a different method of
proof. Consequently, our proof of Theorem 2.1 does not use the martingale
convergence theorem. Thus it yields a different proof of the compactness result
of Borgs, Chayes, Cohn and Zhao [2].

This extended abstract is based on [10]. We refer the reader for proofs,
which have been mostly omitted, extensions to higher order tensors and further
details to [10].

2 Compact orbit spaces in Banach spaces

Before we can state our result, we need some definitions. Let X = (X, ‖ ·‖) be
a normed space. By B(X) we denote unit ball in X. Let R ⊆ B(X∗), where
X∗ is the dual space of X. We define a seminorm ‖ · ‖R and pseudo metric dR
on X by

‖x‖R := sup
r∈R

|r(x)| dR(x, y) := ‖x− y‖R



for x, y ∈ X.

For a pseudo metric space (X, d) let Aut(X) denote the group of invertible
maps g : X → X that preserve d. Let G be a subgroup of Aut(X). Define a
pseudo metric d/G on X by

(d/G)(x, y) := inf
g∈G

d(x, gy)

for x, y ∈ X. Note that since (d/G)(x, y) is just equal to the distance between
the G-orbits of x and y, this implies that d/G is indeed a pseudo metric. For
our purposes it is sometimes more convenient to work with (X, d/G) than
with X/G, but note that (X, d/G) is compact if and only if X/G is compact.
Recall that a (pseudo) metric space is called totally bounded of for each ε > 0
it can be covered with finitely many balls of radius ε.

For a subset Y of a linear space X and k ∈ N we define

k · Y := {y1 + . . .+ yk | yi ∈ Y }.
Note that when Y is convex, k · Y is just equal to kY . Let X be a normed
space and let W ⊂ X. Let H be a Hilbert space We call W H-small, if there
exists a contractive linear map T : H → X and a function c : (0,∞) → N

such that W ⊂ c(ε)T (B(H)) + εB(X) for each ε > 0. Note that T gives rise
to a contractive linear map T ∗ : X∗ → H∗ defined by f �→ (h �→ f(T (h))) for
f ∈ X∗ and h ∈ H. When we talk about a H-small space we will implicitly
assume the presence of the maps T, T ∗ and c.

Theorem 2.1 Let (X, ‖ · ‖) be a Banach space and let G be a subgroup of
Aut(X). Let R ⊆ B(X∗), be G-stable and let W ⊂ X be a G-stable and
weakly, or weakly sequentially compact set. Then

(i) if (W, dR/G) is totally bounded, then (W, dR/G) is compact;

(ii) if W is H-small for some Hilbert space H, and if (k · (TT ∗R), dR/G) is
totally bounded for each k ∈ N, then (W, dR/G) is totally bounded and
hence compact by (i).

Observe that when X is a Hilbert space, Theorem 2.1 reduces to [11,
Theorem 2.1]. Theorem 2.1 can be proved using a similar method as has been
used in [11] and we omit the proof.

3 Regularity lemmas

In [7], Lovász and Szegedy applied the compactness of the graphon space,
cf. (1), to derive approximation results for graphons, cf. [7, Lemma 5.2].
This result implies several types of regularity lemmas varying from the weak



regularity lemma [4], to the original lemma [12], to a ‘super strong’ variant
[1]. See [5] for more details. We can derive something similar in our Banach
space setting (we omit the proof):

Lemma 3.1 Let (X, ‖·‖) be a Banach space, let G ⊆ Aut(X), let R ⊂ B(X∗)
and let W ⊂ X be G-stable and suppose that (W, dR/G) is compact. Let for
k ∈ N, Yk ⊂ W be G-stable such that Y := ∪k∈NYk is dense in W (w.r.t. ‖·‖).
Let h : (0,∞) × N → (0, 1) be any function. Then for any ε > 0 there exists
n ∈ N such that for any w ∈ W there exists w′ ∈ W and y ∈ Ym, with m ≤ n,
such that

‖w − w′‖R ≤ h(ε,m) and ‖w′ − y‖ ≤ ε.

Since the norm ‖ · ‖ on X satisfies ‖X‖ ≤ ‖x‖R for each x ∈ X, taking
h(ε,m) = ε for all m, Lemma 3.1 implies several types of weak regularity
lemmas by taking different choices of Yk. When applying this to Lp([0, 1]2),
one can for example take Yk to be the collection of functions that are constant
on Vi × Vj for some partition {V1, . . . , Vk} of [0, 1]

4 Proof sketch of Theorem 1.1

Let us first remark that the compactness of the Lp graphon space proved by
Borgs, Chayes, Cohn and Zhao [2] follows easily from Theorem 2.1.

Indeed, let p ∈ (1,∞], let W = B(Lp([0, 1]2)) ⊂ X = L1([0, 1]2). (If p ≥ 2
we take X = L2([0, 1]2).) Taking R = {χA×B | A,B ⊂ [0, 1] measurable},
makes ‖ · ‖R into the cut norm. As group G we take the group of measure
preserving bijections φ : [0, 1] → [0, 1]. Then dR/G is equal to δ�, the cut
metric. The compactness result from [2] can now be stated as follows:

(W, dR/G) is compact.(2)

To see how (2) follows from Theorem 2.1, let H = L2([0, 1]2). Then W is
H-small by [2] or see Lemma 4.1 below. Note that TT ∗ restricted to R is the
identity. Since any measurable set A can be mapped onto any interval of length
λ(A) by a measure preserving bijection, cf. [8], it follows that (k ·R, dR/G) is
compact (see [11] for details). It is an easy consequence of the Banach-Alaoglu
theorem that W is weakly compact. Thus Theorem 2.1 (ii) now implies that
(W, dR/G) is compact.

To prove Theorem 1.1 we need some additional results. First of all define
for any q ≥ 1, Rq := {f1 ⊗ f2 | fi ∈ B(Lq([0, 1])} and note that for any
W ∈ Lq([0, 1]2 we have, by Hölder’s inequality, ‖W‖q �→ q

q−1
= ‖W‖Rq .



Lemma 4.1 Let (Ω, μ) be any probability space. Let p > p′ ≥ 1 and ε >
0. Then there exists a constant C such that B(Lp(Ω)) ⊆ CB(L∞(Ω)) +
εB(Lp′(Ω)).

Lemma 4.2 Let p > s ≥ 1 and let ε > 0. Then there exists a constant C
such that Rp ⊆ CR∞ + εRs.

With these two lemmas (whose proof we omit), the proof proceeds as
follows. We let X = Lq∗([0, 1]2), and W = B(Lp([0, 1]2)). The group G is
defined as above. As a consequence of (1) we know that B(L∞([0, 1]2, dR∞/G)
is compact. (Note that this is also implied by (2).) We use this combined with
Lemma 4.2 to show that (B(L∞([0, 1]2)), dRq/G) is compact. Using Lemma
4.1 we then show that (W, dRq/G) is totally bounded. The Banach-Alaoglu
theorem is used to show that W is weakly compact. We can then invoke
Theorem 2.1 (i) to conclude that (W, dRq/G) is compact.

5 Algorithmic applications

So far we have obtained one algorithmic application of the results mentioned
here. It is not so much a direct application of the regularity type lemmas,
but more an application of the proof of Theorem 1.1. Combining Lemmas
4.1 and 4.2 with the sampling results of Borgs, Chayes, Lovász, Sós and
Vesztergombi [3], we obtain randomised approximation algorithms for com-
puting �q �→ �q/(q−1)- matrix norms. In particular, there exists a RPAS for
dense matrices. See [9] for more details.
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