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Abstract

An edge- (vertex-) coloured graph is rainbow connected if there is a rainbow path
between any two vertices, i.e. a path all of whose edges (internal vertices) carry
distinct colours. Rainbow edge (vertex) connectivity of a graph G is the smallest
number of colours needed for a rainbow edge (vertex) colouring of G. In this paper
we propose a very simple approach to studying rainbow connectivity in graphs.
Using this idea, we give a unified proof of several new and known results, focusing
on random regular graphs.
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1 Introduction

An edge-coloured graph G is called rainbow connected if there is a rainbow
path between any two vertices, that is a path on which all edges have distinct
colours. Any connected graph G of order n can be made rainbow-connected
using n − 1 colours by choosing a spanning tree and giving each edge of the
spanning tree a different colour. Hence we can define emphrainbow connec-
tivity, rc(G), as the minimal number of colours needed to ensure that G is
rainbow connected.

Rainbow connectivity is introduced in 2008 by Chartrand et al. [3] as a
way of strengthening the notion of connectivity. The concept has attracted
a considerable amount of attention in recent years, see for example [1], [2],
[4], [6], and the survey [7]. It is also of interest in applied settings, such as
securing sensitive information transfer and networking (see, e.g., [4]).

We are interested in upper bounds for rainbow connectivity, first studied
by Caro et al. [1]. The trivial lower bound is rc(G) ≥ diam(G), and it turns
out that for many classes of graphs, this is a reasonable guess for the value
of rainbow connectivity. Krivelevich and Yuster [6] showed that a connected
n-vertex graph G of minimum degree δ satisfies rc(G) ≤ 20n

δ
, which is of the

same order as the elementary bound diam(G) ≤ 3n
δ+1

proved by Erdős et al. in

[5]. Then Chandran et al. [2] settled this question by proving rc(G) ≤ 3n
δ+1

+3,
which is asymptotically tight.

A random r-regular graph of order n is a graph sampled from Gn, r, which
denotes the uniform probability space of all r-regular graphs on n labelled
vertices. These graphs were extensively studied in the last 30 years, see, e.g.,
[8]. In this paper we consider Gn, r for r constant and n → ∞. We say that an
event holds with high probability (whp) if its probability tends to 1 as n tends
to infinity, but only over the values of n for which nr is even (so that Gn, r is
non-empty).

A random r-regular graph has strong connectivity properties, for example,
the diameter of Gn, r is whp asymptotic to logn

log(r−1)
. Dudek et al. [4] showed

that rc (Gn, r) = O(logn) whp, which is the correct dependence on n. We will
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return to this result later.

The aim of this note is to present a simple approach which immediately
implies results on rainbow colouring of several classes of graphs. It provides
a unified approach to various settings, yields new theorems, strengthens some
of the earlier results and simplifies the proofs. It is based on edge- and vertex-
splitting.

The main idea of the edge-splitting lemma is simple: we decompose G into
two edge-disjoint spanning trees T1 and T2 with a common root vertex and
small diameters. We use different palettes for edges of T1 and T2, ensuring
that each tree contains a rainbow path from any vertex to the root. Hence if
we can get the diameters of T1 and T2 ‘close’ to the diameter of G (say within
a constant factor), then we have obtained a strong result.

We exhibit a few applications of the lemma. First we use it to give a
straightforward proof of the result of Krivelevich and Yuster [6], that is

Theorem 1.1 For a connected n-vertex graph G of minimum degree δ ≥ 4,

rc(G) ≤
16n

δ
.

Next we turn to random regular graphs.The rainbow colouring of Gn, r of
Dudek et al. [4] typically uses Ω(r logn) colours, which for large r is signif-
icantly bigger than the diameter of Gn, r. Using our splitting lemma we can
improve it to an asymptotically tight bound.

Theorem 1.2 There is an absolute constant c such that for r ≥ 5 , rc(Gn, r) ≤
c logn

log r
whp.

For r ≥ 6, the theorem is an immediate consequence of the contiguity
of different models of random regular graphs. With little extra work, our
approach also works for 5-regular graphs.

The question of which characteristics of Gn, r ensure small rainbow con-
nectivity arises naturally. Recalling that expander graphs also have diameter
logarithmic in n, it makes sense to look at expansion properties. The following
theorem, proved in the full paper, generalises the previous result on Gn, r.

Theorem 1.3 Let ǫ > 0. Let G be a graph of order n and degree r whose
edge expansion is at least ǫr. Furthermore, assume r ≥ 64ǫ−1 log (64ǫ−1).
Then rc(G) = O (ǫ−1 log n) .

In particular, this theorem applies to (n, r, λ)-graphs with λ ≤ r(1− 2ǫ), i.e.
n-vertex r-regular graphs whose all eigenvalues except the largest one are at
most λ in absolute value.



Krivelevich and Yuster [6] have introduced the corresponding concept of
rainbow vertex connectivity rvc(G), the minimal number of colours needed for
a rainbow colouring of vertices of G. The only point to clarify is that a path
is said to be rainbow if its internal vertices carry distinct colours. The easy
bounds diam(G) − 1 ≤ rvc(G) ≤ n also hold in this setting. Krivelevich
and Yuster have demonstrated that it is impossible to bound the rainbow
connectivity of G in terms of its vertex rainbow connectivity, or the other way
around. They also bound rvc(G) in terms of the minimal degree.

Our approach essentially works for vertex colouring as well. In Section 3
we present the vertex-splitting lemma. It is then used to prove the vertex-
colouring analogue of Theorem 1.2 on random regular graphs.

Theorem 1.4 There is an absolute constant c such that whp rvc(Gn, r) ≤
c logn

log r
for all r ≥ 26.

2 Edge rainbow connectivity

We now state and prove the splitting lemma.

Lemma 2.1 Let G = (V, E) be a graph. Suppose there are two connected
spanning subgraphs G1 = (V,E1) and G2 = (V, E2) such that |E1 ∩ E2| ≤ c.
Then rc(G) ≤ diam(G1) + diam(G2) + c.

Proof. Let B = E1 ∩ E2. Colour the edges of B in distinct colours. These
colours will remain unchanged, and the remaining edges get coloured according
to graph distances in G1 and G2, denoted by d1 and d2. Choose an arbitrary
v ∈ V and define distance sets Uj = {u ∈ V : d1(v, u) = j} and Wj = {u ∈
V : d2(v, u) = j}. For 1 ≤ j ≤ diam(G1), colour the edges between Uj−1 and
Uj with colour aj. Similarly, using a new palette (bj), colour the edges between
Wj−1 and Wj with colour bj for each 1 ≤ j ≤ diam(G2). The colouring indeed
uses at most diam(G1) + diam(G2) + c colours.

To see that it is a rainbow colouring, look at two vertices x1 and x2 in V .
A shortest path Pi from xi to v is rainbow for our choice of colouring. If P1

and P2 are edge-disjoint, the concatenation is a rainbow path between x1 and
x2. Otherwise, if P1 and P2 intersect in one of the edges of B, we walk from
x1 along P1 to the earliest common edge. We use this edge to switch to P2

and walk to x2.

✷



2.1 Rainbow connectivity and minimum degree

In this setting, the best possible result has been shown by Chandran et al
[2]. Namely, a connected graph G of order n and minimum degree δ satisfies
rc(G) ≤ 3n

δ+1
+ 3. We show how the splitting lemma can be used with basic

graph theory to obtain a good upper bound, rc(G) ≤ 16n
δ
.

Proof. [Sketch proof of Theorem 1.1] We split the graph G = (V,E) into two
spanning subgraphs of minimum degree at least δ−1

2
. Assume that all vertices

of G have even degree, since this can be ensured by adding a matching to
G. Then, using connectedness of G, order its edges along an Eulerian cycle
e1, e2 . . . em, and define
F1 = {ej : j ∈ [m] even} and F2 = {ej : j ∈ [m] odd}.

The graph formed by F1 may not be connected. But since the minimum
degree of this graph is δ−1

2
, each connected component has order at least δ

2
.

Hence the number of components of F1 is at most 2n
δ
, so we can add a set

B1 ⊂ E such that G1 = (V, F1 ∪ B1) is connected, and |B1| ≤
2n
δ
. We define

the set B2 analogously.

An elementary graph-theoretic argument (see [5]) shows that subgraphs G1

and G2 of G have diameters at most 3n
δ/2+1

≤ 6n
δ
. Applying the edge-splitting

lemma to G1 and G2 gives rc(G) ≤ 6n
δ
+ 6n

δ
+ 4n

δ
≤ 16n

δ
. ✷

2.2 Random regular graphs

Two sequences of probability spaces Fn and Gn on the same underlying mea-
surable spaces are called contiguous, written Fn ≈ Gn, if a sequence of events
(An) occurs whp in Fn if and only if it occurs whp in Gn. Let G and G ′ be two
models of random graphs on the same vertex set. We get a new random graph
G by taking the union of independently chosen graphs G1 ∈ G and G2 ∈ G ′,
conditional on the event E(G1) ∩ E(G2) = ∅. The probability space of such
disjoint unions is denoted by G ⊕ G ′.

It is known that Gn, r is contiguous with any other model which builds
an r-regular graph as an edge-disjoint union of random regular graphs and
Hamiltonian cycles (see, e.g., [8]). The specific results we use in proving
Theorem 1.2 are Gn, r+r′ ≈ Gn, r ⊕ Gn, r′ and Gn, r+2 ≈ Gn, r ⊕ Hn, where Hn

is a random Hamiltonian cycle on [n]. Recall that Theorem 1.2 says that for
r ≥ 5, rc(Gn, r) ≤

c logn
log r

whp.

Proof. [Proof of Theorem 1.2 for r ≥ 6.] As usually, we assume that rn is
even, and define ri so that Gn, ri are non-empty for i = 1, 2. If r is odd, then n



is even and we can set ri =
r±1
2
. Otherwise, we set r1 = r2 =

r
2
or ri =

r
2
±1 as

appropriate. The observation at the end of the proof resolves the case r = 6.

LetGi be a random ri-regular graph. Then with high probability diam(Gi) ≤
(1+o(1)) logn
log(ri−1)

≤ c logn
2 log r

, where c is a suitable constant. Let G be the union of two

such edge-disjoint graphsG1 andG2. The splitting lemma gives rc(G) ≤ c logn
log r

.

Since G is a random element of Gn, r1 ⊕Gn, r2, the random r-regular graph
has the same property whp.

For r = 6, we model Gn,6 as the disjoint union of two nearly 3-regular
graphs using Gn,6≈Hn ⊕Hn ⊕Hn. ✷

Our approach also works for r = 5, but we omit the proof in this note.
Since Gn, 5 ≈ Gn, 1 ⊕Hn ⊕ Hn, we can model our 5-regular graph as a union
of two random graphs G1 and G2, where each Gi is an edge-disjoint union of
a Hamiltonian cycle and a random matching of size

⌊

n
4

⌋

.

In the full paper, we show that Gi has diameter O(logn) whp. The key
observation is that Gi can be built in two steps as follows. Denote m =

⌊

n
4

⌋

.
First we select a random subset B = {b1, b2, . . . , b2m} ⊂ [n] of order 2m, and
then independently a random perfect matching on {b1, b2, . . . , b2m}.

3 Vertex rainbow connectivity

We now state the vertex-colouring analogue of Lemma 2.1. The proof follows
the same steps.

Lemma 3.1 Let G = (V,E) be a graph. Suppose that V1, V2 ⊂ V satisfy: 1)
V1 ∪ V2 = V ; 2) |V1 ∩ V2| ≤ c; 3) every vertex v ∈ V1 has a neighbour in V2

and vice versa; 4) G[Vi] is connected, for i = 1, 2. Then

rvc(G) ≤ diam(G[V1]) + diam(G[V2]) + c+ 2.

3.1 Random regular graphs

We will split the vertices of G using the following lemma. The proof is a
standard application of the Lovász Local Lemma. If we are only interested in
large values of r, we may take γ close to 0.5.

Lemma 3.2 Let r ≥ 26. Then there is a constant γ ≥ 0.12 such that the
vertices of any r-regular graph G can be partitioned as V = V1 ∪ V2, and each
v ∈ Vi satisfies r > degG[Vi](v) ≥ γr.

To use such a partition, we need an estimate on the number of edges
spanned by subsets of vertices of Gn, r. Since r is constant with n, Gn,r is



contiguous to the configuration (or pairing) model of random regular graphs,
described for example in [8]. Via the configuration model, we prove the fol-
lowing lemma.

Lemma 3.3 Fix a natural number r ≥ 3, and let G = Gn,r.

(i) For γ′ satisfying γ′r ≥ 3, there is a constant α = α(γ′) > 0 such that
whp all sets S ⊂ [n] of vertices of G of order up to αn span fewer than
|S|γ′r

2
edges.

(ii) There is an absolute constant β > 0 such that whp all sets S ⊂ [n] of
vertices of G of order up to βn

r
span fewer than 3|S| edges.

We can now prove the main result of this section, rvc(Gn, r) = O
(

logn
log r

)

whp for r ≥ 26.

Proof. [Proof of Theorem 1.4.] Let G be a random r-regular graph, γ = 0.12.
Use Lemma 3.2 to obtain a partition V = U1 ∪U2 such that r > degG[Ui](v) ≥
γr for all v ∈ Ui and i = 1, 2.

All statements about G from now on will hold with high probability. In
particular, we assume that G satisfies Lemma 3.3 with γ′ = γ

1+ǫ
, where ǫ > 0

is chosen so that γr
1+ǫ

> 3. (e.g. ǫ = 0.03 is small enough). We only need the
extra (1 + ǫ)−1 factor later, for Claim 3. Such edge distribution implies that
each connected component of G[Ui] contains at least αn vertices, where α is
the constant from Lemma 3.3.

Claim 1. We can find Wi ⊂ V such that Wi = O(1) and G[Ui ∪ Wi] is
connected.

For a set of vertices A ⊂ V , denote Γj(A) = {v ∈ V : dG(v, A) ≤ j}.
It is well-known that a random regular graph has good expansion properties,
i.e. there is a constant φ > 0 such that whp |Γ(A)| ≥ (1 + φ)|A| whenever
|A| ≤ n

2
. Now suppose that A has linear order, |A| ≥ αn, and take an integer

l > logα−1−log 2
log(1+φ)

. Iterating the expansion property gives that |Γl(A)| > n
2
. To

prove Claim 1, suppose A and B are vertex sets of two connected components
of G[Ui], each of order at least αn. We just showed that Γl(A) ∩ Γl(B) 6= ∅,
so there is a path of length at most 2l from A to B in G. Adding the vertices
of this path to Wi reduces the number of connected components by one, so
repeating this step α−1 times ensures that Vi = Ui ∪ Wi spans a connected
graph Gi = G[Vi]. The vertex sets V1 and V2 now satisfy |V1 ∩ V2| = O(1).

Claim 2. For r ≥ 104 (so that γr ≥ 12), every T ⊂ Vi of order at most
βn
γr2

satisfies |ΓGi
(T )| ≥

(

1 + γr
12

)

|T |.

Suppose T does not satisfy the claim, and let S = ΓGi
(T ). Note that by



the hypothesis |S| ≤
(

1 + γr
12

)

· βn
γr2

< βn
r
. Hence we can deduce from Lemma

3.3 (ii) that S spans fewer than 3|S| edges, which contradicts the minimum
degree of vertices inside T .

Claim 3. Let α be the constant from Lemma 3.3 (i) and ǫ > 0 as above.
Every subset T ⊂ Vi of order at most αn

1+ǫ
satisfies |ΓGi

(T )| ≥ (1 + ǫ)|T |.
The proof is analogous to Claim 2.

For r ≥ 104, Claim 2 implies that starting from any vertex v ∈ Vi, we
can expand in Gi to a set of order βn

γr2
in c1 logn

log r
steps, where c1 is a constant

independent of r and n. Further O(log r) steps give a set of order αn
1+ǫ

, by
Claim 3. For finitely many values r < 104, we skip the first expansion and
readjust the constants.

Denote k = c logn
log r

, where c > c1 is sufficiently large for the previous argu-

ment to go through. Suppose the diameter of Gi is larger than
4k
α
, and take x0

and xR such that the shortest path x0x1 . . . xR is longer than 4k
α
. Then we can

use the procedure above to expand from vertices x0, x3k, x6k . . . by k steps
to get 4

3α
disjoint (by the choice of the path) neighbourhoods, each of order

αn
1+ǫ

, which is a contradiction. Thus applying Lemma 3.1 to subsets V1 and V2

gives rvc(G) ≤ 9c logn
α log r

, as required. ✷

Concluding remarks

In this note we proposed a simple approach to studying rainbow connectivity
and rainbow vertex connectivity in graphs. Using it we gave a unified proof
of several known results, as well as of some new ones. Two obvious interest-
ing questions which remain open are to show that rainbow edge connectivity
and rainbow vertex connectivity of random 3-regular graphs on n vertices are
logarithmic in n.
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