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Abstract

We prove that for every graph H, if a graph G has no H minor, then V (G) can
be partitioned into three sets such that the subgraph induced on each set has no
component of size larger than a function of H and the maximum degree of G.
This answers a question of Esperet and Joret and improves a result of Alon, Ding,
Oporowski and Vertigan and a result of Esperet and Joret. As a corollary, for every
positive integer t, if a graph G has no Kt+1 minor, then V (G) can be partitioned
into 3t sets such that the subgraph induced on each set has no component of size
larger than a function of t. This corollary improves a result of Wood.
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1 Introduction

For a graph G and a set X of vertices, we write G[X] to denote its subgraph
induced on X. The famous Four Color Theorem states that every planar graph
G admits a partition of its vertex set into four sets X1, X2, X3, X4 such that for
1 ≤ i ≤ 4, every component of G[Xi] has at most one vertex. Certainly there
are planar graphs whose vertex set cannot be partitioned into three such sets.
However, Esperet and Joret [2] proved that the number of sets can be reduced
to three, if we relax each Xi to induce a subgraph having no component of
size larger than a function of the maximum degree of G. More generally, they
proved that for every surface Σ and for every positive integer Δ, there exists
an integer N such that every graph G of maximum degree at most Δ can be
partitioned into three sets X1, X2, X3 such that for 1 ≤ i ≤ 3, every component
of G[Xi] has at most N vertices. The number “three” in their theorem is best
possible, since a large triangular grid has maximum degree six but its vertex
set cannot be partitioned into two sets such that each set induces a subgraph
with no component of small size by the famous HEX lemma.

On the other hand, Alon, Ding, Oporowski and Vertigan [1] proved that
graphs in a broader class admit such a partition into four parts. We say that
graph H is a minor of a graph G if a graph isomorphic to H can be obtained
from a subgraph of G by contracting edges. Alon et al. [1] proved that for
every graph H and for every positive integer Δ, there exists an integer N such
that if H is not a minor of a graph G of the maximum degree at most Δ, then
V (G) can be partitioned into four sets X1, X2, X3, X4 such that for 1 ≤ i ≤ 4,
every component of G[Xi] has at most N vertices.

In this paper, we provide a positive answer of a question of Esperet and
Joret [2, Question 5.1] by proving the following strengthening of the mentioned
theorem of Esperet and Joret and the mentioned theorem of Alon et al.

Theorem 1.1 For every graph H and every positive integer Δ, there exists
an integer N such that if H is not a minor of a graph G of maximum degree
at most Δ, then V (G) can be partitioned into three sets X1, X2, X3 such that
for 1 ≤ i ≤ 3, every component of G[Xi] has at most N vertices.

As an application of Theorem 1.1, we investigate the following relaxation
of Hadwiger’s conjecture: what is the minimum k as a function of t such that
for some N , every graph G with no Kt+1 minor admits a partition of V (G) into
k sets X1, X2, . . . , Xk with the property that each G[Xi] has no component on
more than N vertices? Hadwiger’s conjecture [4], if true, would imply that
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k = t. Kawarabayashi and Mohar [5] proved that k ≤ �15.5(t + 1)�, and
Wood [7] proved that k ≤ �3.5t + 2�. Theorem 1.1 leads to the following
improvement of these results by using a recent theorem of Edwards, Kang,
Kim, Oum, and Seymour [3].

Theorem 1.2 For every positive integer t, there exists N such that if Kt+1

is not a minor of a graph G, then V (G) can be partitioned into 3t sets
X1, X2, . . . , X3t such that for 1 ≤ i ≤ 3t, every component of G[Xi] has at
most N vertices.

Now we prove Theorem 1.2. By Edwards et al. [3], there exists an integer
s such that V (G) can be partitioned into t sets V1, V2, . . . , Vt such that the
maximum degree of G[Vi] is at most s for 1 ≤ i ≤ t. By Theorem 1.1, there
exists an integer N depending only on t such that for 1 ≤ i ≤ t, Vi can be
partitioned into three sets Vi1, Vi2, Vi3 and each of G[Vi1], G[Vi2], G[Vi3] has no
component having size larger than N vertices. Therefore, {Vij : 1 ≤ i ≤ t, 1 ≤
j ≤ 3} is a desired partition. This proves Theorem 1.2.

2 Sketch of the proof of Theorem 1.1

A k-coloring of a graph G is a function mapping the vertices of G into the set
{1, 2, . . . , k}. A monochromatic component is a component of the subgraph
induced by the vertices of the same color in a given k-coloring. Note that the
color classes in a k-coloring form a partition of V (G). So our objective is to
find a 3-coloring of G such that every monochromatic component has small
size.

To prove Theorem 1.1, we in fact prove a stronger result in which we allow
few vertices are precolored and show that the precoloring can be extended to a
3-coloring of the whole graph such that the size of the monochromatic compo-
nents meeting precolored vertices are relatively small. Note that Theorem 1.1
is an immediate corollary of the following theorem by taking Y = ∅.
Theorem 2.1 For every graph L and positive integer Δ, there exists an in-
teger η such that if L is not a minor of a graph G of maximum degree at most
Δ, then for every subset Y of V (G) with |Y | ≤ η, every 3-coloring of Y can
be extended to that of G satisfying the following.

(i) The union of all monochromatic components of G meeting Y contains at
most |Y |2Δ vertices.

(ii) Every monochromatic component of G contains at most η2Δ vertices.



Our proof of Theorem 2.1 uses the machinery in the Graph Minors series of
Robertson and Seymour. The following statements require several definitions
to be formally stated, so we only include informal descriptions here. A theorem
of Robertson and Seymour [6] states that for every graph G not containing a
fixed graph as a minor and for every “highly connected subgraph” T in G, G
can be “decomposed” into pieces such that the “root piece” contains T and is
“almost embeddable” in a surface of bounded genus.

An essential step toward our proof of Theorem 2.1 is to prove a weaker
version of Theorem 2.1 but generalize the result of Esperet and Joret [2] on
graphs embeddable in a fixed surface to graphs that are “almost embeddable”
in a fixed surface.

Lemma 2.2 For every surface Σ and for every integers a, b, c, there exists a
number N such that every “(a, b, c)-almost embeddable” graph G of maximum
degree Δ and for every subset Y of V (G), every 3-coloring of Y can be extended
to that of G such that every monochromatic component has at most N vertices
and the union of all monochromatic components meeting Y contains at most
N |Y | vertices.

Now we are ready to sketch the proof of Theorem 2.1. We shall proceed
by induction on the number of vertices of G. We say that a 3-coloring of G is
Y -good if it satisfies the conclusions of Theorem 2.1.

First, we show that we may assume that |Y | ≥ η/Δ2. Suppose that |Y | <
η/Δ2. Let X be the union of Y and its neighbors, and let Z be the set of
vertices of G not in X but with distant two from some vertex in Y . Note that
|Z| < η. We apply induction to G − X with every vertex in Z precolored by
color 1 to obtain a Z-good 3-coloring of G − X. Then further coloring the
neighbors of Y with color 2 leads to a Y -good 3-coloring of G, since the union
of the monochromatic components meeting Y contains at most |Y |(Δ + 1)
vertices.

Second, we show that G contains a “highly connected subgraph” that
contains most of vertices of Y . A separation of a graph G is a pair of edge-
disjoint subgraphs (A,B) such that A∪B = G. The order of (A, B) is |V (A)∩
V (B)|. For every separation (A,B) of G, we define YA = (Y ∩V (A))∪(V (A)∩
V (B)) and YB = (Y ∩ V (B)) ∪ (V (A) ∩ V (B)). Suppose that there exists a
separation (A,B) of small order such that both A and B contain many vertices
in Y , then |YA| and |YB| are less than η. We color V (A)∩ V (B)− Y by color
1 and apply induction to A and B, respectively, to obtain a YA-good coloring
cA of A and a YB-good colorings cB of B. Then we obtain a 3-coloring of G
by combining the coloring cA and cB. Since every monochromatic component



intersects both A−V (B) and B−V (A) must intersect V (A)∩V (B) ⊆ YA∩VB,
the size of the union of all such monochromatic components in G is at most
the sum of the monochromatic components of A and B meeting YA and YB

with respect to cA and cB, respectively. Then the superadditivity of quadratic
functions shows that the 3-coloring of G is Y -good.

Therefore, there exists a “highly connected subgraph” T in G containing
most of the vertices in Y . The structure theorem of Robertson and Seymour
for excluding a fixed graph as a minor [6] implies that G can be “decomposed”
into pieces such that the “root piece” contains T and is “almost embeddable”
in a surface of bounded genus. Hence, Lemma 2.2 shows that the precoloring
on Y ∩V (T ) can be extended to a 3-coloring cT of T such that each monochro-
matic component contains at most N |Y ∩ V (T )| vertices. In particular, cT is
(Y ∩ V (T ))-good as |Y ∩ V (T )| is large.

Finally, since |Y ∩W | is small for each “non-root piece” W , the induction
hypothesis ensures that the 3-coloring on V (W )∩ (Y ∪V (T )) can be extended
to a (V (W ) ∩ (Y ∪ V (T )))-good 3-coloring cW of W . We combine cT with
the colorings cW for all “non-root pieces” W to obtain a 3-coloring c of G.
Note that every monochromatic component of c intersecting different pieces
of the “decomposition” must meet V (T ) ∩ V (W ) for some “non-root piece”
W . Then the superaddivitity of quadratic functions shows that c is Y -good.
This finishes the outline of the proof of Theorem 2.1.
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