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Abstract

We develop a general framework for computing formulae enumerating polycubes
of size n which are proper in n−k dimensions (spanning all n−k dimensions), for
a fixed value of k. Besides the fundamental importance of knowing the number
of these simple combinatorial objects, such formulae are central in the literature of
statistical physics in the study of percolation processes and the collapse of branched
polymers. We re-affirm the already-proven formulae for k ≤ 3, and prove rigorously,
for the first time, that the number of polycubes of size n that are proper in n−4
dimensions is 2n−7nn−9(n− 4)(8n8− 128n7+828n6− 2930n5+7404n4− 17523n3+
41527n2 − 114302n+ 204960)/6.
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1 Introduction

A d-dimensional polycube of size n is a connected set of n cubes in d di-
mensions, where connectivity is through (d−1)-dimensional faces. Two fixed
polycubes are considered distinct if they differ in their shapes or orientations.
A polycube is called proper in d dimensions if the convex-hull of the centers
of its cubes is d-dimensional. Following Lunnon [4], we let DX(n, d) denote
the number of fixed polycubes of size n that are proper in d dimensions.

Enumeration of polycubes and computing their asymptotic growth rate are
important problems in combinatorics and discrete geometry, originating in sta-
tistical physics [3], where they play a fundamental role in the analysis of per-
colation processes and the collapse of branched polymers. To-date, no formula
is known for Ad(n), the number of fixed polycubes of size n in d dimensions,
for any fixed value of d. The main interest in DX stems from the fact that
Ad(n) can be easily computed using the formula Ad(n) =

∑d
i=0

(
d
i

)
DX(n, i)

(Lunnon [4]). In a matrix listing the values of DX, the top-right triangular
half and the main diagonal contain only 0s. This gives rise to the question of
whether a pattern can be found in the sequences DX(n, n−k), where k > 0 is
the ordinal number of the diagonal. Significant progress in estimating λd, the
asymptotic growth rate of the number of polycubes in d dimensions, has been
obtained in the literature of statistical physics, although the computations
usually relied on unproven assumptions and on formulae for DX(n, n − k)
interpolated empirically from known values of Ad(n). Peard and Gaunt [7]
predicted that for k > 1, the diagonal formula DX(n, n − k) has the pattern
2n−2k+1nn−2k−1(n−k)hk(n), where hk(n) is a polynomial in n, and conjectured
explicit formulae for hk(n) for k ≤ 6. Luther and Mertens [5] conjectured a
formula for k = 7.

It is easy to show that DX(n, n−1) = 2n−1nn−3 (seq. A127670 in [6]).
Barequet et al. [2] proved for the first time that DX(n, n−2) = 2n−3nn−5(n−
2)(2n2−6n+9) (seq. A171860). The proof uses a case analysis of the possible
structures of spanning trees of the polycubes, and the various ways in which
cycles can be formed in their cell-adjacency graphs. Similarly, Asinowski et
al. [1] proved that DX(n, n−3) = 2n−6nn−7(n − 3)(12n5 − 104n4 + 360n3 −
679n2 +1122n− 1560)/3, again, by counting spanning trees of polycubes, yet
the reasoning and calculations were significantly more involved. The inclusion-
exclusion principle was applied in order to count correctly polycubes whose
cell-adjacency graphs contained certain subgraphs, so-called “distinguished
structures.” In comparison with the case k=2, the number of such structures is
substantially higher, and the ways in which they can appear in spanning trees
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Fig. 1. A polycube P , the corresponding graph γ(P ), and spanning trees of γ(P ).

are much more varied. The latter proof provided a better understanding of the
difficulties that one would face in applying this technique to higher values of k.
The number of distinguished structures grows rapidly, the inclusion relations
between them are much more complicated, and the ways in which they are
connected by forests are much more varied. As anticipated [1], it is totally
impractical to manually achieve a similar proof for k>3.

In this paper we create a theoretical set-up for proving the formulae for
DX(n, n− k) for a fixed value of k. Our method fully automates the manual
method presented in [1,2]. For this nontrivial generalization, we need a few
key observations about polycubes that are proper in n−k dimensions. We
also provide a general characterization of distinguished structures, and design
algorithms that produce and analyze them automatically. Using our imple-
mentation of this method, we find the explicit formula (which has never been
proven before) for DX(n, n− 4), stated in the following theorem.

Theorem 1.1 DX(n, n−4) = 2n−7nn−9(n−4)(8n8−128n7+828n6−2930n5+
7404n4 − 17523n3 + 41527n2 − 114302n+ 204960)/6.

2 Overview of the Method

Denote by Pn the set of proper polycubes of size n in n−k dimensions. Let
P ∈ Pn, and let γ(P ) denote the adjacency graph of P constructed as follows:
The vertices correspond to the cells of P ; two vertices are connected by an edge
if their corresponding cells are adjacent; and an edge has label i (1 ≤ i ≤ n−k)
if the corresponding cells have different i-coordinate. The direction of the
edge is from the lower to the higher cell. See Figure 1 for an example. Since
P �→ γ(P ) is an injection, it suffices to count the graphs obtained from the
members of Pn in this way. We count these graphs by counting their spanning
trees. A spanning tree of γ(P ) has n−1 edges labeled by numbers from the
set {1, 2, . . . , n − k}; All these labels are present because the polycube is
proper in n−k dimensions. Hence, n−k edges of the tree are labeled with the
labels 1, 2, ..., n− k, and the remaining k−1 edges repeat labels from the same
set. There is a bijection between the possibilities of repeated edge labels and
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Fig. 2. (a–g) A few distinguished structures for k = 4 (note that (f) is disconnected);
(h) A cycle structure. A dotted line is drawn between every pair of neighboring cells
and around every pair of coinciding cells.

the partitions of the integer k−1. Specifically, each partition p={a1, . . . , ah}
(where

∑h
i=1 ai = k−1) corresponds to h repeated labels in the spanning tree,

such that the ith repeated label appears ai+1 times. In such a case we say
that the tree is “labeled according to p.” We denote by Π(m) the set of all
partitions of the integer m. When we consider a spanning tree of γ(P ), we
distinguish a repeated label i which appears r times by i, i′, ..., i′(r−1).

To compute |Pn|, we consider all possible directed edge-labeled trees of
size n with the possible repetitions of edge labels, and count only those that
represent valid polycubes, then derive the actual number of polycubes.

3 Distinguished Structures

For each directed edge-labeled tree, one can attempt to build the correspond-
ing polycube. In this process there are two types of problems: (a) Cells
may coincide (a tree with overlapping cells is invalid, see Figures 2(a,d)); and
(b) Two cells which are not connected by a tree edge may be adjacent (such
a tree corresponds to a polycube P with cycles in γ(P ), and, therefore, its
spanning tree is not unique, see Figures 2(b,e)). A distinguished structure is
the union of all paths (edges and incident vertices) that connect two coinciding
or adjacent cells. This characterization allows the design of an algorithm for
producing DSk: The set of all distinguished structures in n−k dimensions.
We begin with generating all “free trees” (non-isomorphic trees) of size at
most the value specified in Lemma 3.1. Then, we process each free tree T
of size t by labeling its edges according to every partition p ∈ ∪k−1

i=1Π(i) so
as to obtain a directed edge-labeled tree T ′, and then checking (by a DFS
traversal) whether T ′ contains coinciding or neighboring cells. T ′ is added to
DSk if it is not isomorphic to any structure of size t already in DSk, and if



at least one of the following conditions holds: (i) T ′ contains two coinciding
or neighboring cells which are connected by a path with t−1 edges (see, e.g.,
Figures 2(a,b,d,e)); (ii) T ′ is isomorphic to the union of d1, ..., dm ∈ DSk, such
that the isomorphic copies of d1, ..., dm in T ′ cover all its edges (see, e.g., Fig-
ures 2(c,g)). Disconnected distinguished structures (see, e.g., Figure 2(f)) are
generated by checking if collections of edge-connected structures in DSk yield
a single disconnected structure labeled according to p ∈ ∪k−1

i=1Π(i).

Lemma 3.1 A connected (resp., disconnected) distinguished structure in DSk

has at most 3k − 2 (resp., 4k) vertices.

Lemma 3.2 [1, Lemma 7] [2, Lemma 2] The number of directed trees with n
vertices and n−1 distinct edge labels is 2n−1nn−3, for n ≥ 2.

Let Tp denote the number of directed trees with n vertices labeled according
to p ∈ Π(k − 1). Then, Tp = π(p)

(
n−k
|p|

)
2n−1nn−3.

Lemma 3.3 Let σ ∈ DSk be composed of k∗≥1 trees s1, . . . , sk∗ with a total
of n∗ vertices and distinct edge labels. The number of occurrences of σ in trees
of size n with distinct edge labels is Fn(σ) = (

∏k∗
i=1 |si|) (n−n

∗+k∗−1)!
(n−n∗)! nn−n∗+k∗−2.

Proof. (Sketch) We proceed by double counting, enumerating in two ways
the different sequences of directed edges that can be added to a graph with
n−n∗ vertices and a structure σ so as to form a rooted tree. One way is
to add the edges one by one: There are N=

∏k∗
i=1 |si| options to choose a

root for each component. We begin with a forest with n−n∗+k∗ rooted trees.
After adding a set of edges forming a rooted forest with i trees, there are
n(i−1) choices for the next edge. Therefore, the total number of choices is
N ∏n−n∗+k∗

i=2 n(i−1). Another way to count these sequences is to start with
an unrooted edge-labeled tree containing σ, choose one of its n vertices as a
root, and choose one of the (n−n∗)! possible sequences, say, η, label the n−n∗
vertices which do not belong to σ according to η, and “shift” each vertex label
to the incident edge towards the root. The number of sequences formed this
way is nFn(σ)(n−n∗)!. Hence, Fn(σ) = N (n−n∗+k∗−1)!

(n−n∗)! nn−n∗+k∗−2, as claimed.�

3.1 Inclusion-Exclusion

Let Fn(σ) denote the number of occurrences of σ in directed edge-labeled
trees of size n. Obviously, Fn(σ)=2n−n

∗+k∗−1Fn(σ). Let the distinguished
structure σ′ ∈ DSk be labeled according to p′ ∈ ∪k−1

i=1Π(i). Let us denote by
Op(σ

′) the number of occurrences of σ′ in directed trees of size n that are
labeled according to p ∈ Π(k−1). Computing Op(σ

′) involves choosing the |p|



Fig. 3. A snapshot of the IE graph for k = 4.

repeated labels in the tree and the labels of σ′, counting the automorphisms
of σ′, and multiplying by Fn(σ

′).
When counting the occurrences of a structure σ ∈ DSk, other distinguished

structures which contain multiple occurrences of σ are counted multiple times.
In order to count correctly, we build an inclusion-exclusion graph IE=(V , E)
whose vertices correspon to the structures inDSk. There is an edge e = σ1→σ2

labeled with c if σ1 contains c occurrences of σ2. Hence, the roots of IE are all
the structures that are not contained in any other structure. Let �(e) denote
the label of the edge e, I(σ2) denote the set {σ1 ∈ V : (σ1→σ2) ∈ E}, and Tp(σ)
denote the number of trees of size n labeled according to p ∈ Π(k−1) that
contain σ but no other structure σ′ ∈ I(σ) as a subtree. It is easy to prove by
induction that Tp(σ2) = Op(σ2)−

∑
σ1∈I(σ2)

�(σ1→σ2)Tp(σ1). Figure 3 shows a
subgraph of IE for k=4. A simple bottom-up procedure traverses the graph
and computes Tp(u) for every vertex u ∈ V and every partition p ∈ Π(k − 1).

4 Counting Polycubes

4.1 Trees

Similarly to DX(n, d), let DT(n, d) denote the number of fixed tree polycubes
of size n that are proper in d dimensions. Every tree polycube gives rise to a
unique spanning tree, and every directed tree labeled according to p ∈ Π(k−1)
corresponds to a tree polycube in Pn unless it contains a structure σ ∈ DSk as
a subtree. (A spanning tree of a tree polycube can neither contain coinciding
cells because these are illegal, nor can it contain neighboring cells). Thus,
we exclude all the trees that contain any structure σ ∈ DSk as a subtree,

obtaining that DT(n, n−k) =
∑

p∈Π(k−1)
Tp−

∑
σ∈DSk

Tp(σ)
∏|p|

j=1 p[j]!
. (The division by

∏|pi|
j=1(pi[j]!) is because each tree polycube is counted that many times.)



4.2 Nontrees

Let C(k) denote the set of all cycle structures of polycubes proper in n−k
dimensions. This set can be found using DSk: A distinguished structure is a
spanning tree of a cycle if it contains only neighboring cells and no coinciding
cells. For example, the structure shown in Figure 2(e) is a spanning tree of
the cycle shown in Figure 2(h). For any Ci ∈ C(k), let PCi denote the number
of polycubes P ∈ Pn that contain Ci in γ(P ). Suppose that a distinguished

structure σ ∈ DSk has c occurrences in Ci. Then, PCi =
∑

p∈Π(k−1)
Tp(σ)

c
∏|p|

j=1 p[j]!
.

Finally, DX(n, n−k) = DT(n, n−k) +∑|C(k)|
i=1 PCi .

5 Results

The entire method was implemented in a C++ program, using Mathematica

for simplifying the final formula. Our results agree completely with the formu-
lae conjectured in the literature of statistical physics. For k=3, the program
found 147 distinguished structures and 13 cycle structures. For k=4, the
program found 8,397 distinguished structures and 179 cycles. The parallel
computation took about 15 minutes on a supercomputer with 12 processors
and 64 GB of RAM. The program produced data files which document the
entire computation, serving as a proof of Theorem 1.1.
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