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Abstract

We explore probabilities that a permutation sampled from a finite symmetric group
uniformly at random has only short or long cycles. Asymptotic formulas, as the
order of the group increases, valid in specified regions are obtained using the sad-
dle point method. As an application, we establish a formula with remainder term
estimate for the total variation distance between the count process of the multiplic-
ities of cycle lengths in the random permutation and a relevant process defined via
independent Poisson random variables.
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Introduction

We explore the probabilities ν(n, r) and ν(n, [r]) that a permutation sampled
from the symmetric group Sn uniformly at random has cycles of lengths, re-
spectively, not exceeding r and greater than r, where 1 ≤ r ≤ n and n → ∞.
Asymptotic formulas valid in specified regions for the ratio n/r are obtained
using the saddle point method. Demonstrating possible applications we estab-
lish an asymptotic formula with the remainder term estimate of the total vari-
ation distance between the count process of the multiplicities of cycle lengths
in the random permutation and a relevant process defined via independent
Poisson random variables.

Our leading idea is to adopt the methodology elaborated in numerous
number theoretical papers dealing with integer numbers missing small or large
prime factors. This theory is well exposed in the book by G. Tenenbaum [18]
and in more recent works. By analogy, a similar theory was carried out for
polynomials over a finite field (see, for example, [15], [5]) and generalized to
the so-called additive arithmetical semigroups (see [21], [13], [12]). The survey
[9] discusses the parallelism between the theories. One should also mention
attempts to examine the same problem for general decomposable structures
(see [7], [4] to list but a few). So far, the obtained results do not overtake the
level of research achieved for natural numbers.

Let us focus on permutations σ ∈ Sn. There exists a vast literature dealing
with the case when n/r is small. If Ln(σ) denotes the longest cycle length,
then the result by V.L. Goncharov [6] from 1944 shows that

ν(n, n/u) =
1

n!
|{σ ∈ Sn : Ln(σ) ≤ n/u}| = ρ(u) + o(1)

uniformly in u ≥ 1. Here ρ(u) is the Dickman function defined as the contin-
uous solution to the difference-differential equation

uρ′(u) + ρ(u− 1) = 0

with the initial condition ρ(u) = 1 for 0 ≤ u ≤ 1. Theorem 4.13 in [2],
confined to permutations, yields

ν(n, r) = ρ(u)(1 + o(1))

if n/r → u ∈ (0,∞). As a byproduct of enumeration of elements in an additive
arithmetical semigroup missing large factors, the last relation (extended to a
larger region for n/r) appeared earlier in the first author’s paper [12]. The
result is also contained in our first theorem.

In what follows, we write f(x) = Bg(x) if |f(x)| ≤ C|g(x)| in an indicated
region for x ∈ R with an absolute constant C > 0.



Theorem 0.1 If
√
n log n ≤ r ≤ n and n ≥ 2, then

ν(n, r) = ρ
(n
r

)(
1 +

Bn log(n/r + 1)

r2

)
.

The saddle point approximation was usually applied in the case of small
r. In particular, we have from B. Harris and L. Schoenfeld [10] that

ν(n, r) =
q(x)√
2πλ(x)

(
1 +Or

( 1
n

))
(1)

for an arbitrary fixed r. Here

q(x) :=
1

xn
exp

{
r∑

j=1

xj

j

}
, λ(x) :=

r∑
j=1

jxj,

and x := x(n, r) is unique positive solution to the saddle point equation
r∑

j=1

xj = n.

Theorem 1 is indispensable seeking extensions of (1).

Theorem 0.2 If 1 ≤ r ≤ n, then

ν(n, r) =
q(x)√
2πλ(x)

(
1 +

Br

n

)
.

We infer from the latter a relation which is circulating in an erroneous
form (see [1], [16], [20]).

Theorem 0.3 If 2 ≤ r ≤ log n, then

n!ν(n, r) =
1√
r
nn(1−1/r) exp

{ r∑
N=0

drNn
(r−N)/r

}
(1 +Bn−1/r).

Here dr0 = −1 + 1/r,

dr,r = −1

r

r∑
j=2

1

j

and

drN =
Γ(N +N/r)

(r −N)Γ(N + 1)Γ(1 +N/r)

if 1 ≤ N ≤ r − 1. Here Γ(z) denotes the Euler gamma-function.

The detailed proofs of Theorems 1, 2 and 3 are exposed in our preprint [14].
Similar results have been obtained on the dual problem, i.e. on the probability



ν(n, [r]). Below, we present one of them. Let ω(u) denote Buchstab’s function
[18] defined as a solution to difference-differential equation

(vω(v))′ = w(u− 1)

for v > 2 with the initial condition ω(v) = 1/v if 1 ≤ v ≤ 2. For convenience,
we extend the definition by ω(v) = 0 for v < 1.

Theorem 0.4 Let u := n/r. There exists an absolute constant a > 0 such
that

ν(n, [r]) = e−
∑r

j=1
1
j

(
eγω(u) +B

e−au/ log2(1+u)

r

)
.(2)

for
√
n log n ≤ r < n.

Estimate (2) sharpens the first result of this type obtained in [11] and that
in subsequent papers [4] and [8].

The next result concerns the total variation distance dn(r) between the
distribution of a random vector (r.v.) k̄r(σ) := (k1(σ), . . . , kr(σ)) under the
uniform measure in Sn, where kj(σ) counts the number of cycles in σ of length
j, and the distribution of a r.v. Z̄r = (Z1, . . . , Zr), where Z1, . . . , Zr are
independent Poisson r. variables defined on some probability space and such
that EZj = 1/j. Upper estimates of dr(n), often called Fundamental Lemmas,
play an essential role dealing with value distribution of statistics defined on
k̄r(σ). We refer to the concise book [2] for more information.

Basing upon some heuristics given in [3], D. Stark [17] established an
approximation of dn(r) involving a function

H(u) :=
1

2

∞∫
0

|ω(u− v)− e−γ|ρ(v)dv + ρ(u)

2
.

It was proved in [17] that dn(r) → H(β) if n/r → β ∈ [1,∞) as n → ∞.
The well known relation dn(r) = o(1) if r = o(n) could be also recalled. We
extended Stark’s result and obtained a remainder term estimate.

Theorem 0.5 If
√
n log n ≤ r ≤ n and u = n/r, then

dn(r) = H(u)
(
1 +B

u3/2 log2(u+ 1)

r

)
.(3)

Tenenbaum’s argument given in paper [19] was very helpful in proving the
last theorem.

Intertwining of number-theoretical and combinatorial ideas in the field and
details of proofs will be discussed during the talk.
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