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Abstract

We consider variations of the original art gallery problem where the domain is a
polyomino, a polycube, or a polyhypercube. Anm-polyomino is the connected union
of m unit squares called pixels, an m-polycube is the connected union of m unit
cubes called voxels, and an m-polyhypercube is the connected union of m unit hy-
percubes in a d dimensional Euclidean space. In this paper we generalize and unify
the known results about guarding polyominoes and polycubes and obtain simpler
proofs. We also obtain new art gallery theorems for guarding polyhypercubes.
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1 Introduction

The original art gallery problem, posed by Klee in 1973, asks to find the min-
imum number of guards sufficient to cover any polygon with n vertices. The
first solution to this problem was given by Chvátal [2], who proved that ⌊n/3⌋
guards are sometimes necessary, and always sufficient to cover a polygon with
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n vertices. Later Fisk [3] provided a shorter proof of Chvátal’s theorem us-
ing an elegant graph coloring argument. Klee’s art gallery problem has since
grown into a significant area of study. Numerous art gallery problems have
been proposed and studied with different restrictions placed on the shape of
the galleries or the powers of the guards. (See the monograph by O’Rourke
[8], and the surveys by Shermer [10] and Urrutia [11].)

In this paper we consider variations of the art gallery problem where the
gallery is an m-polyomino, consisting of a connected union of m 1 × 1 unit
squares called pixels, or an m-polycube, consisting of a connected union of m
1 × 1 × 1 unit cubes called voxels. We will also consider higher dimensional
cases where an m- polyhypercube is the connected union of m unit hypercubes
in a d dimensional Euclidean space. Throughout this paper Pm denotes an
m-polyomino when d = 2, an m-polycube when d = 3, or an m-polyhypercube
when d is not specified. We say that a point a ∈ Pm covers a point b ∈ Pm

provided a = b, or the line segment ab does not intersect the exterior of Pm.
We say that a pixel/voxel A covers a point b, provided some point a ∈ A
covers b. A set of points G is called a point guard set for Pm if for every point
b ∈ Pm there is a point a ∈ G such that a covers b. A set of pixels/voxels
G is called a pixel/voxel guard set for Pm if for every point b ∈ Pm there is a
pixel/voxel A ∈ G such that A covers b.

In [4], Irfan et al. show that ⌊m+1

3
⌋ point guards are always sufficient and

sometimes necessary to cover any m-polyomino Pm, with m ≥ 2. (See also
Biedl et al. [1] for a detailed proof by case analysis.) Recently, Massberg [6]
provided an alternate proof using perfect graphs. In [5], Iwerks claims that
the same bound holds for polycubes and asks whether the result extends to
polyhypercubes in d ≥ 4 dimensions. In Section 2 we unify and generalize
all these results proving that ⌊m+1

3
⌋ point guards are always sufficient and

sometimes necessary to cover any m-polyhypercube Pm, with m ≥ 2 in any
dimension d ≥ 2. While our lower bound example is a straight forward gener-
alization of the examples in 2 and 3 dimensions, our argument for the upper
bound is simpler than previous arguments, and works in every dimension.

In [9], Pinciu shows that ⌊m+1

11
⌋ + ⌊m+5

11
⌋ + ⌊m+9

11
⌋ pixel guards are always

sufficient and sometimes necessary to cover an m-polyomino. Lower bounds
and upper bounds for the number of voxels required to cover an m-polycube
in 3D can be found in [5], but no sharp bounds are currently known when
the dimension d ≥ 3. In Section 3 we provide lower bounds for the number



Fig. 1. An 11-polycube that requires 4 point guards.

of pixel/voxels required to cover an m-polyhypercube in d dimensions. Our
bounds are dependent on d, and we conjecture that they are sharp.

In Section 4 we provide upper bounds independent of d for the number of
pixel/voxel guards required to cover an m-polyhypercube.

2 Point Guards in PolyHypercubes

Here is our main result:

Theorem 2.1 For any m-polyhypercube Pm with m ≥ 2 in d ≥ 2 dimensions,
⌊m+1

3
⌋ point guards are always sufficient, and sometimes necessary to cover

Pm.

Proof. We will use a construction to prove the necessity part of our result.
First we will construct a polyhypercube Pm when m ≥ 2 and m ≡ 2 mod
3. Then m = 3k + 2 for some non-negative integer k. For every integer i,
1 ≤ i ≤ 2k + 1, we consider the hypercubes Ai that are bounded by the
hyperplane x1 = i−1, the hyperplane x1 = i, and the hyperplanes xj = 0 and
xj = 1 where j 6= 1. For every odd integer i, 1 ≤ i ≤ 2k + 1 we consider the
hypercubes Bi on top of Ai. (obtained from a 1 unit translation of Ai along
the xd-axis.) An illustration of such a polyhypercube when d = 3 is shown
in Figure 2. The constructed polyhypercube has m = 3k + 2 hypercubes
and requires ⌊m+1

3
⌋ = k + 1 points guards to be covered, as no two distinct

hypercubes Bi’s are visible by the same point guard. Simple alterations of this
construction can provide examples in the case when m 6≡ 2 mod 3. Sufficiency
follows from Proposition 2.2 by selecting the guard set of smallest cardinality.✷



Proposition 2.2 For any m-polyhypercube Pm, there exist three point guard
sets G1, G2 and G3 such that:

|G1|+ |G2|+ |G3| ≤ m+ 1.

Proof. Given an m-polyhypercube Pm in dimension d ≥ 2, let G∗

m be the
dual graph of Pm. Let Tm be a spanning tree of G∗

m. We can assume that
Tm was constructed using the DFS or BFS algorithms, therefore Tm is the
underlying graph of a rooted tree. Let A1, A2,. . . ,Am be the hypercubes of
Pm in the order in which they are added while constructing Tm. We can
assume without loss of generality that we chose a coordinate system such that
all vertices have integer coordinates. Let V1 be the set of vertices of Pm such
that all d coordinates are odd, and let V2 be the set of vertices of Pm such
that all d coordinates are even. Then every hypercube of Pm has exactly one
vertex in V1 and one vertex in V2. We will use Algorithm 1 to construct the
three point guard sets G1, G2 and G3. Now it is easy to see the union between

Algorithm 1 Construction of G1, G2 and G3.

1: procedure

2: G1 :=the unique vertex of A1 that is in V1

3: G2 :=the unique vertex of A1 that is in V2

4: G3 := ∅
5: for i := 2 to m do

6: let Aj with j < i be the parent of Ai in the construction of Tm.
7: let u be the unique vertex of Aj in V1.
8: let v be the unique vertex of Aj in V2.
9: let w be the unique vertex of Ai in V1 ∪ V2 such that w 6= u and

w 6= v.
10: choose distinct integers k, l ∈ {1, 2, 3} such that u ∈ Gk and v ∈ Gl.

(such integers might not be unique.)
11: G6−k−l := G6−k−l ∪ {w}
12: end for

13: end procedure

the hypercube Ai and its parent Aj is connected and covered by each of the
sets G1, G2 and G3. Since Ai was arbitrary, we obtain that G1, G2 and G3 are
point guard sets of Pm. Moreover, since the cardinality of |G1| + |G2| + |G3|
was initially 2, and it can go up by at most 1 during each step of the loop,
we obtain that |G1| + |G2| + |G3| ≤ m + 1, which concludes the proof of the
proposition. ✷



Fig. 2. Algorthm 1 applied to a 20-polyomino.

Finaly we would like to note that if G∗

m is a tree, then G1, G2 and G3 are
disjoint. However if G∗

m has cycles, then the same vertex can belong to
more than one of the three guard sets. For example, if we apply the al-
gorithm to the 20-polyomino from Figure 2 we obtain the following point
guard sets: G1 = {v1, v4, v5, v9, v11, v15, v17, v18}, G2 = {v2, v6, v10, v18} and
G3 = {v3, v7, v8, v12, v13, v16, v19}.

3 Voxel Guards in PolyHypercubes: Bounds Depen-

dent of d

The following theorem provides a lower bound for the number of pixel/voxel
guards required to cover all m-polyhypercubes in d dimensions:

Theorem 3.1 For any integer d ≥ 2 and for any integer m ≥ 2 there exists
an m-polyhypercube Pm in d dimensions such that the minimum number of
pixel/voxel guards necessary to cover Pm is:

2d−3
∑

i=1

⌊

m+ 3i− 2

6d− 1

⌋

+

⌊

m+ 6d− 7

6d− 1

⌋

+

⌊

m+ 6d− 3

6d− 1

⌋

.

Proof. First we will construct Pm when m > 6d and m ≡ 2 mod(6d − 1).



Fig. 3. An (11k + 2)-polyomino that requires 3k + 1 pixel guards.

Then m = (6d − 1)k + 2 for some positive integer k. For every integer i,
1 ≤ i ≤ k we consider the hypercubes Ai that are bounded by the hyperplane
x1 = 4i − 4, the hyperplane x1 = 4i − 3, and the hyperplanes xj = 0 and
xj = 1 where j 6= 1. For every 1 ≤ i ≤ k − 1 we connect Ai and Ai+1 with
T-shaped 4-polyhypercubes. Then on every face of Ai that is not attached to
a T-shaped polyhypercube we attach an L-shaped 3-polyhypercube to obtain
Pm. Since there are (k − 1) T-shaped polyhypercubes and (2d − 2)k + 2
L-shaped polyhypercubes, then the number of hypercubes of Pm is:

m = k + 4(k − 1) + 3[(2d− 2)k + 2] = (6d− 1)k + 2.

The polyomino P11k+2 from Figure 3 has 3 + 7k + 4(k − 1) + 3 = 11k + 2
pixels ilustrates this construction when d = 2. The dual graph of this poly-
hypercube is a tree with (k − 1) + [(2d − 2)k + 2] = (2d − 1)k + 1 leaves.
Since two pixels/voxels that correspond to a leaf cannot be guarded by the
same pixel/voxel guard, then the number of pixels/voxels required to guard
Pm is the same as the one stated in the theorem. Slight alterations of this
construction obtained by deleting one to 6d− 1 hypercubes provide examples
when m ≤ 6d or m 6≡ 2 mod (6d− 1). ✷

We conjecture that the bound from Theorem 3 is sharp:

Conjecture 3.2 For any m-polyhypercube Pm in dimension d ≥ 2 with m ≥
2,

2d−3
∑

i=1

⌊

m+ 3i− 2

6d− 1

⌋

+

⌊

m+ 6d− 7

6d− 1

⌋

+

⌊

m+ 6d− 3

6d− 1

⌋

pixel/voxel guards are always sufficient, and sometimes necessary to cover Pm.

The conjecture is true when d = 2, and the proof can be found in [9].

Theorem 3.3 For any m-polyomino Pm with m ≥ 2, ⌊m+1

11
⌋+⌊m+5

11
⌋+⌊m+9

11
⌋

pixel guards are always sufficient, and sometimes necessary to cover Pm.



4 Voxel Guards in PolyHypercubes: Bounds Indepen-

dent of d

One can notice that the sharp bound for the number of point guards sufficient
to guard any m-polyhypercube is independent of the dimension d, while the
bounds for the number of pixel/voxel guards are dependent of d. The following
theorem gives us an upperbound for the number of pixel/voxel guards that
depends on the number of hypercubes only, and is independent of d:

Theorem 4.1 (a) For any m-polyhypercube Pm with m ≥ 3 in d ≥ 2 dimen-
sions, ⌊1

3
m⌋ pixel/voxel guards are always sufficient to cover Pm.

(b) For any positive real number c < 1

3
, there exist positive integers m and

d and an m-polyhypercube Pm which requires more than ⌊cm⌋ pixel/voxel
guards.

Proof.

(a) It follows easily from the fact that the 2-domination number of the dual
graph G∗

m of Pm is no more than ⌊1

3
m⌋ (see Meir et al. [7]), and the

fact that two hypercubes that correspond to vetices within distance two
in G∗

m cover each other. An alternate proof can be obtained by apply-
ing Theorem 2.1 to the polyhypercube obtained from Pm by deleting a
hypercube that corresponds to a leaf in a spanning tree of G∗

m.
(b) The m-polyhypercubes constructed in Theorem 3.1 require

2d−3
∑

i=1

⌊

m+ 3i− 2

6d− 1

⌋

+

⌊

m+ 6d− 7

6d− 1

⌋

+

⌊

m+ 6d− 3

6d− 1

⌋

≈

⌊

2d− 1

6d− 1
m

⌋

pixel/voxel guards to be covered. If c < 1

3
and d is sufficiently large, then

2d−1

6d−1
> c, therefore Pm requires more than ⌊cm⌋ pixel/voxel guards.

✷
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