
An Improved Upper Bound on the Growth
Constant of Polyominoes

Gill Barequet 1

Dept. of Computer Science
The Technion—Israel Inst. of Technology

Haifa 32000, Israel

Ronnie Barequet 2

Dept. of Computer Science
Tel Aviv University

Tel Aviv 69978, Israel

Abstract

Polyominoes are edge-connected sets of squares on the square lattice. The symbol
λ usually denotes the growth constant of A(n), the sequence that enumerates poly-
ominoes. In this paper we prove that λ ≤ 4.5685 by analyzing the growth constant
of a sequence B(n), for which B(n) ≥ A(n) for any value of n ∈ N. The recursive
formula for B(n) is based on the representation of a polyomino as the assembly of
a pair of smaller polyominoes and a code that describes the assembly. Then, an
upper bound on the growth constant of B(n) is derived by a careful analysis of this
assembly.
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1 Introduction

A polyomino of size n is an edge-connected set of n cells on the square lattice
Z

2. Two fixed polyominoes are equivalent if one can be transformed into the
other by a translation. In this paper we consider only fixed polyominoes,
and so we simply refer to them in the sequel as “polyominoes.” The study
of polyominoes began in the 1950s in statistical physics [3,12], where they
are usually called lattice animals. Counting polyominoes is a long-standing
problem in enumerative combinatorics.

Let A(n) denote the number of polyominoes of size n (sequence A001168 in
the on-line encyclopedia of integer sequences [11]). Elements of the sequence
A(n) are currently known up to n = 56 [7]. The growth constant (asymp-
totic growth rate) of polyominoes has also attracted much attention in the
literature. Klarner [8] showed that the limit λ := limn→∞ n

√
A(n) exists. The

convergence of A(n+ 1)/A(n) to λ (as n→∞) was proven only three decades
later by Madras [10] by using a novel pattern-frequency argument. The best-
known lower bound on λ is 3.9801 [1]. 3 It is widely believed (see, e.g., [5,6])
that λ ≈ 4.06, and the currently best estimate, λ = 4.0625696± 0.0000005, is
due to Jensen [7].

In 1961, Eden [4] showed an upper bound on λ by using a simple argument:
Any polyomino can be built by a set of n − 1 “instructions” taken from a
superset of size 3(n − 1). (Some of these instruction sets are illegal, and
some other sets produce the same polyomino, but this only helps.) Hence,

λ ≤ limn→∞
(
3(n−1)
n−1

)1/n
= 6.75.

The currently best upper bound on λ was proven by Klarner and Rivest [9]
in 1973 by generalizing Eden’s method. Instead of simple “instructions”
(telling how to add a single square to the polyomino) they used so-called
“twigs” (composite instructions for adding several squares at once). By using
larger and larger twigs (up to size 10), Klarner and Rivest were able to show
that λ ≤ 4.6496. Since then, there were no developments with respect to the
upper bound on λ.

In this paper we use a simple idea for improving the upper bound. We
build a sequence B(n) which is larger than A(n) for almost every value of
n ∈ N. Thus, the growth constant of B(n), if it exists, is in particular an
upper bound on λ. We use this method for showing that λ ≤ 4.5685.

3 In the informal note [2] it was shown that λ > 4.0025.



2 The Bound

Our first building block is the ability to partition every polyomino in a bal-
anced manner.

Definition 2.1 A polyomino P can be partitioned into two polyominoes P1, P2

if the cell set of P can be split into two complementing non-empty subsets,
such that each subset is a valid (connected) polyomino. We also say that the
polyominoes P1, P2 can be attached to each other so as to yield the polyomino
P .

“Attaching” polyominoes is a natural generalization of the widely-used
notion concatenating polyominoes, that is, the operation of attaching them in
a lexicographic order of their cells.

Definition 2.2 A partition of a polyomino of size n into two polyominoes
P1, P2 is k-balanced if k ≤ |Pi| ≤ n− k (for i = 1, 2).

Theorem 2.3 Every polyomino of size n has at least one �(n− 1)/4	-balanced
partition.

Proof. (Sketch) Let us rephrase the claim in graph terminology. In fact, we
prove a stronger claim which states that every connected graph G, for which
Δ(G) ≤ 4, can be partitioned into two vertex-disjoint subgraphs G1, G2, such
that (1) G1, G2 are connected; and (2) �(n− 1)/4	 ≤ |Gi| ≤ 
(3n+ 1)/4�
(for i = 1, 2). This can be done constructively by considering a spanning
tree of G, marking an arbitrary vertex as its root, and traversing the tree
downwards from the root while keeping the invariant that either the already-
traversed subgraph meets the size requirement or the untraversed part contains
a subgraph with this property. When the process stops, which must be the
case, the desired partition is found. �

However, we do better than the above. In order to show that every poly-
omino has (at least) two balanced partitions, we very slightly reduce the bal-
ance parameter. Let

π(n) =

{ 
(n− 1)/4� if n ≡ 2 (mod 4);

�(n− 1)/4	 otherwise.

Theorem 2.4 Every polyomino of size n has at least two π(n)-balanced par-
titions.
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Fig. 1. Possible partitioning configurations (Theorem 2.4).

Proof. Let P be a polyomino of size n. By Theorem 2.3, we know that P
has a �(n− 1)/4	-balanced partition into two polyominoes P1, P2 of total size
n. Let P1 be the smaller of the two polyominoes (that is, |P1| ≤ n/2 and
|P2| ≥ n/2), and let c1, c2 be cells of P1, P2, respectively, which touch each
other when P1, P2 are attached and form P (see Fig. 1).

Let us show that P can be partitioned in a balanced manner in at least one
more way. Consider the removal of c2 from P2, leaving between one to three
connected components of P2. (See a few options in Figs. 1(a-d).) Assume first
that the size of at least one of these components, denoted as P2a , is at least
�(n− 1)/4	. Let P2b be the remainder of P2 (note that c2 ∈ P2b). Then, the
polyominoes P1 ∪ P2b and P2a are also a �(n− 1)/4	-balanced partition of P .

Otherwise, the size of all components of P2 is strictly less than �(n− 1)/4	.
In this case there must be three components since the size of P2 is at least
�n/2	. Consider now the number of components into which P1 is split by the
removal of c1. If there is a single component (Fig. 1(b)), then the polyominoes
Q1 = P1 \ {c1} and P2 ∪ {c1} are also a partition of P . However, in this
particular case, the size of Q1 may fall to 
(n− 1)/4�. This happens when
3(�(n− 1)/4	 − 1) + 1 = 
(3n+ 1)/4�, which is the case iff n ≡ 2 (mod 4).

Otherwise, we are in the case in which P2 is split into three components
(all of size less than �(n− 1)/4	) and P1 is split into two or three components
(Fig. 1(e)). This is the only case in which graph arguments do not suffice and
a property of the lattice is needed. The crucial observation is that one of the
neighbors of c2 within P2 (say, c′2) must touch one of the neighbors of c1 (say,
c′1)! We immediately obtain the alternative partition of P : Denote by P2a the
component of P2 that contains c

′
2. The polyominoes P1 ∪P2a and P2 \P2a are

also a �(n− 1)/4	-balanced partition of P . This completes the proof. �

Unlike the concatenation operation, two polyominoes can be attached in
many ways. We bound from above the number of attachments.

Theorem 2.5 Let P1, P2 be two polyominoes of sizes n1, n2, respectively, s.t.
n1 + n2 = n. Then, P1, P2 can be attached to each other in at most 2n ways.
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Fig. 2. Attachments of polyominoes.

Proof. (Sketch) A pair of rectangular polyominoes of dimensions v1×h1 and
v2 × h2 (Fig. 2(a)) can be attached in 2(v1 + v2 + h1 + h2 − 2) ways. A cavity
in the boundary of a polyomino is a concave portion of it, and cavities can be
nested (Fig. 2(b)). For a fixed perimeter, an induction on the level of cavity
nesting shows that the maximum number of ways to attach the polyominoes is
obtained when they have no cavities. (Hence, the maximum is neither obtained
with polyominoes with holes.) In addition, for a specified size, the perimeter is
maximized by tree polyominoes. The only tree polyominoes without cavities
are “sticks” (Fig. 2(c)), for which vi + hi = ni + 1, implying the claim. �

We can now prove our main result.

Theorem 2.6 λ ≤ 4.5685.

Proof. First, the combination of Theorems 2.4 and 2.5 implies that

A(n) ≤ n

�n/2�∑
k=π(n)

A(k)A(n− k).

Indeed, every polyomino of size n can be partitioned in at least two π(n)-
balanced ways into a pair of polyominoes P1, P2 of sizes n1, n2, respectively
(where n1+n2 = n), and a code with up to 2n options will tell us uniquely how
to attach P1, P2 in order to reconstruct P . Naturally, P can be partitioned in
more than two ways, and the number of options to attach P1 and P2 can be
smaller than 2n, but this only helps.

Second, define the sequence B(n) as follows.

B(n) =

{
A(n) 1 ≤ n ≤ 56;

n
∑�n/2�

k=π(n)B(k)B(n− k) n > 56.

(Recall that the elements of the sequence A(n) are known for 1 ≤ n ≤ 56.)
Since B(n) ≥ A(n) for any value of n ∈ N, the growth constant of B(n), if
it exists, is an upper bound on λ. Calculations show that B(n) does have an
asymptotic growth constant which is slightly smaller than 4.5685, implying
the claim. �
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