
Cycles and matchings in randomly perturbed
digraphs and hypergraphs

Michael Krivelevich

School of Mathematical Sciences

Tel Aviv University

Tel Aviv, Israel

Matthew Kwan

Department of Mathematics

ETH Zurich

Zurich, Switzerland

Benny Sudakov

Department of Mathematics

ETH Zurich

Zurich, Switzerland

Abstract

We consider several situations where “typical” structures have certain spanning
substructures (in particular, Hamilton cycles), but where worst-case extremal ex-
amples do not. In these situations we show that the extremal examples are “fragile”
in that after a modest random perturbation our desired substructures will typically
appear. This builds on a sizeable existing body of research. Our first theorem is
that adding linearly many random edges to a dense k-uniform hypergraph typically
ensures the existence of a perfect matching or a loose Hamilton cycle. We outline
the proof of this theorem, which involves a nonstandard application of Szemerédi’s
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regularity lemma to “beat the union bound”; this might be of independent inter-
est. Our next theorem is that digraphs with certain strong expansion properties
are pancyclic. This implies that adding a linear number of random edges typically
makes a dense digraph pancyclic. Our final theorem is that perturbing a certain
(minimum-degree-dependent) number of random edges in a tournament typically
ensures the existence of multiple edge-disjoint Hamilton cycles. All our results are
tight.

Keywords: hypergraph, digraph, tournament, smoothed analysis, perfect
matching, Hamilton cycle, pancyclic

1 Introduction

We say that a graph is Hamiltonian if it has a Hamilton cycle: a simple cycle
containing every vertex in the graph. Hamiltonicity is a central notion in
graph theory and has been extensively studied in a wide range of contexts. In
particular, due to a seminal paper by Karp [7], it has become a canonical NP-
complete problem to determine whether an arbitrary graph is Hamiltonian.
There are nevertheless a variety of easily-checkable conditions that guarantee
Hamiltonicity. The most famous of these is given by a classical theorem of
Dirac [3], which states that any n-vertex graph (n ≥ 3) with minimum degree
at least n/2 is Hamiltonian.

Dirac’s theorem demands a very strong density condition, but in a certain
asymptotic sense “almost all” dense graphs are Hamiltonian. If we fix α > 0
and select a graph uniformly at random among the (labelled) graphs with n
vertices and α

(
n

2

)
edges, then the degrees will probably each be about αn.

Such a random graph is Hamiltonian with probability 1 − o (1) (we say it
is Hamiltonian asymptotically almost surely, or a.a.s.). This follows from a
stronger result [11,9] that gives a threshold for Hamiltonicity: a random n-
vertex, m-edge graph is Hamiltonian a.a.s. if m � n logn, and fails to be
Hamiltonian a.a.s. if m� n logn. Here and from now on, all asymptotics are
as n→∞, and we implicitly round large quantities to integers.

In [2], the authors studied Hamiltonicity in the random graph model that
starts with a fixed graph and adds m random edges (this model has since been
studied in a number of other contexts; see for example [1,10]). They found
that to ensure Hamiltonicity in this model we only need m to be linear, saving
a logarithmic factor over the standard model where we start with nothing. To
be precise, [2, Theorem 1] says that for every α > 0 there is c = c (α) such that
if we start with a graph with minimum degree at least αn and add cn random



edges, then the resulting graph will a.a.s. be Hamiltonian. Note that some
dense graphs require a linear number of extra edges to become Hamiltonian
(consider the complete bipartite graph with partition sizes n/3 and 2n/3), so
the order of magnitude of this result is tight.

We can interpret this theorem as quantifying the “fragility” of the few
dense graphs that are not Hamiltonian, by determining the amount of random
perturbation that is necessary to make them Hamiltonian. This is comparable
to the notion of smoothed analysis of algorithms introduced in [13], which in-
volves studying the performance of algorithms on randomly perturbed inputs.
The pioneering result in this field explained why the simplex algorithm is ef-
ficient in practice: even though the algorithm may perform poorly on certain
pathological inputs, these worst-case inputs are not robust under the small
amount of random noise likely to exist in the real world. Similarly, the pre-
vious theorem suggests that if a dense graph is not too rigidly “structured”,
then we can expect it to be Hamiltonian, even if there is no reason for it to
be “typical” among all dense graphs. We note that in this context it may be
more natural to consider different models of random perturbation, in partic-
ular those that delete as well as add random edges. But in most cases, it is
very easy to transfer theorems between different models: since deletion of few
edges will not destroy the density of a graph, it is the addition of edges that
is really important.

Our first contribution is to generalize the aforementioned theorem to hy-
pergraphs (and to give a corresponding result for perfect matchings, which is
nontrivial in the hypergraph setting). Unfortunately, there is no single most
natural notion of a cycle or of minimum degree in hypergraphs. A k-uniform
loose cycle is a k-uniform hypergraph with a cyclic ordering on its vertices
such that every edge consists of k consecutive vertices and every pair of con-
secutive edges intersects in exactly one vertex. The degree of a set of vertices
is the number of edges that include that set, and the minimum (k − 1)-degree
δk−1 is the minimum degree among sets of k−1 vertices. Let Hk (n,m) be the
uniform distribution on m-edge k-uniform hypergraphs on the vertex set [n].

Theorem 1.1 For each α > 0 there is c = c (α) such that:

(a) If H is a k-uniform hypergraph on [kn] with δk−1 (H) ≥ αn, and R ∈
Hk (kn, cn), then H ∪ R a.a.s. has a perfect matching.

(b) If H is a k-uniform hypergraph on [(k − 1)n]with δk−1 (H) ≥ αn, and
R ∈ H ((k − 1)n, cn), then H ∪R a.a.s. has a loose Hamilton cycle.

All the motivation for graphs is still relevant in the hypergraph setting. Dirac’s
theorem approximately generalizes to hypergraphs (see [8]): for small ε and



large n, if the minimum (k − 1)-degree of an n-vertex k-uniform hypergraph
is greater than (1/ (2 (k − 1)) + ε) n then that hypergraph contains a loose
Hamilton cycle. Just as for graphs, the threshold for both perfect match-
ings and loose Hamilton cycles in k-uniform hypergraphs is n logn random
edges (see [4] and [6, Corollary 2.6]), so “almost all” dense hypergraphs have
Hamilton cycles and perfect matchings.

In Section 2 we will outline the ideas in the proof of Theorem 1.1. The
methods usually employed to study Hamilton cycles and perfect matchings in
random graphs are largely ineffective in the hypergraph setting, so we need
a very different proof. In particular, we cannot easily manipulate paths for
Pósa-type arguments. Our proof involves reducing the theorem to the a.a.s.
existence of a perfect matching in the union of a dense bipartite graph G with
a random almost-perfect matching M . The obvious näıve approach to prove
this lemma would be to show that each vertex set expands in G∪M with high
probability, and then apply the union bound over all such sets and finish the
proof with Hall’s theorem. However, the probabilities of failure to expand are
not small enough for the union bound to work over all the exponentially many
vertex subsets. In fact the “reason” for a perfect matching in this perturbed
graph seems to be quite different depending on the structure of the initial
bipartite graph. We therefore apply Szemerédi’s regularity lemma to break
up the graph into clusters of vertices each of which behave “roughly the same”,
and use the union bound to show only that the edges of M spread out well
between the clusters. We can then combine the expansion properties of G
within clusters, and the expansion properties of M between clusters, to prove
the theorem.

We also present some other related theorems, without proof. Our second
theorem gives a general expansion condition for pancyclicity. We say an n-
vertex (di-)graph is pancyclic if it contains cycles of all lengths ranging from
3 to n.

Theorem 1.2 Let D be a directed graph on n vertices with all in- and out-
degrees at least 8k, and suppose for every pair of disjoint sets A,B ⊆ V (D)
with |A| = |B| ≥ k, there is an arc from A to B. Then D is pancyclic.

We hope this theorem could be of independent interest, but our particular
motivation is that it implies a number of results about randomly perturbed
graphs and digraphs. In particular it provides very simple proofs of the the-
orems in [2] concerning Hamiltonicity in randomly perturbed graphs and di-
graphs, and allows us to extend these theorems to pancyclicity. Most gener-
ally, Theorem 1.2 implies the following theorem. Let D (n,m) be the uniform



distribution on m-arc digraphs on the vertex set [n].

Theorem 1.3 For each α > 0, there is c = c (α) such that if D is a digraph
on [n] with all in- and out- degrees at least αn, and R ∈ D (n, cn), then D∪R
is a.a.s. pancyclic.

Our final theorem concerns randomly perturbed tournaments. Although it
is easy to construct tournaments with no Hamilton cycle, we have in fact
shown that every tournament becomes Hamiltonian after a small random per-
turbation. We also show that randomly perturbed tournaments are not just
Hamiltonian, but have multiple edge-disjoint Hamilton cycles. Moreover, we
can give stronger results for tournaments with large minimum in- and out-
degrees.

Theorem 1.4 Consider a tournament T with n vertices and all in- and out-
degrees at least d. Independently choose m = ω (n/ (d+ 1)) random edges of
T and orient them uniformly at random. The resulting perturbed tournament
P a.a.s. has q arc-disjoint Hamilton cycles, for q = O (1).

Note that we allow the minimum degree d to be an arbitrary (possibly zero)
function of n.

2 Proof outline of Theorem 1.1

The ideas in the proofs of parts (a) and (b) of Theorem 1.1 are almost exactly
the same; we outline only the proof of part (a) because the explanation is
simpler.

First, we note that R typically has an almost-perfect matching on its own.
To be precise, for any ε > 0, if c is large then R a.a.s. has a matching M of
(1− ε)n edges. (Note that a.a.s. each set of εkn vertices contains an edge, so
such a matching can be chosen greedily).

By the symmetry of the distributon of R, we can assume that M is a
uniformly random matching of its size. Randomly extend M to a perfect
matching M on the vertex set V (H), and randomly split each edge ei of M
into a vertex ai and a (k − 1)-set bi. Let A be the set of all such ai and let B
contain all the bi. Now, for any hypergraph L on V (G), we define a bipartite
graph GA,B (L) on the vertex set A∪B, by putting an edge between ai and bj
if {ai} ∪ bj is an edge of L. This means GA,B

(
M

)
is a perfect matching and

GA,B (M) is an almost-perfect sub-matching of G
(
M

)
.

In fact, if we condition on A and B then GA,B (M) is a uniformly random
almost-perfect matching between A and B. Since A and B are random, con-



centration inequalities show that δ (GA,B (H)) = Ω (n). Existence of a perfect
matching in H ∪ R then reduces to the following lemma:

Lemma 2.1 There is ξ = ξ (α) > 0 such that the following holds. Let G be a
bipartite graph with parts A,B of equal size n, and suppose δ (G) ≥ αn. Let
M be a uniformly random matching between A and B with (1− ξ)n edges.
Then a.a.s. G ∪M has a perfect matching.

Proof (Sketch) In order to apply Hall’s theorem, we need to show that a.a.s.
|NG∪M (W )| ≥ |W | for all W ⊆ A. The cases |W | ≤ αn and |W | ≥ (1− α)n
are trivial (the density condition on G alone is enough). So we focus on the
case where αn ≤ |W | ≤ (1− α)n.

For each such W (say |W | = wn and |NG (W )| = νn), if ξ is small then

E |NM∪G (W )| = E |NM (W ) \NG (W )|+ |NG (W )|

= w (1− ν) (1− ξ)n+ νn

= wn+ (ν (1− w)− O (ξ))n

≥ |W | .

We can use concentration inequalities to show that Pr (|NM∪G (W )| < |W |) =
e−Θ(n), but we cannot show that this probability is anywhere near as small as
2−n. Therefore we cannot näıvely use the union bound over all subsets W .

So, we apply a certain form of Szemerédi’s regularity lemma. We can
partition almost all the vertices of A (respectively B) into O (1) clusters, such
that the edges between each pair of clusters are “random-like”. This means
that a not-too-small subset of a cluster has roughly the same adjacencies as
the whole cluster.

The critical observation is that it now (more or less) suffices to consider
subsets W ⊆ A which are the union of complete clusters, and there are only
O (1) such W . This is because even if W ′ ⊆ W has only partial intersection
with the clusters, it still has almost the same adjacencies in G as the whole
of W . That is to say, the edges of M that avoid neighbours of W ′ in G
are almost the same as the edges that avoid neighbours of W . So (roughly
speaking) the concentration of |NM (W ) \NG (W )| is enough to give a bound
on |NM (W ′) \NG (W ′)| that allows us to show |NM∪G (W ′)| ≥ |W ′|. �

3 Concluding remarks

There are a few natural questions that remain open. In particular, a k-uniform
tight cycle is a k-uniform hypergraph with a cyclic ordering on its vertices such



that every k consecutive vertices form an edge. There is a Dirac-type theorem
for tight Hamilton cycles [12], and a random dense k-uniform hypergraph
typically has a tight Hamilton cycle [5], so we might expect an analog of
Theorem 1.1 to hold for tight Hamilton cycles. However, it appears this would
require quite a different proof.
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