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Abstract

The Kneser graph K(n, k) has as vertices all k-element subsets of [n] := {1, 2, . . . , n}
and an edge between any two vertices (=sets) that are disjoint. The bipartite Kneser
graph H(n, k) has as vertices all k-element and (n−k)-element subsets of [n] and an
edge between any two vertices where one is a subset of the other. It has long been
conjectured that all connected Kneser graphs and bipartite Kneser graphs (apart
from few trivial exceptions) have a Hamilton cycle. The main contribution of this
work is proving this conjecture for bipartite Kneser graphs. We also establish the
existence of long cycles in Kneser graphs (visiting almost all vertices), generalizing
and improving upon previous results on this problem.
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1 Introduction

The question whether a graph has a Hamilton cycle — a cycle that visits
every vertex exactly once — is a fundamental graph theoretical problem with
a wide range of practical applications, shown to be NP-complete already in
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Karp’s landmark paper [19]. As a consequence, recent years have seen an
increasing interest in Hamiltonicity problems in various different flavors and
the solution of several long-standing open problems (the survey [20] gives an
excellent overview over these developments).

1.1 Hamilton cycles in (bipartite) Kneser graphs

The question whether a graph has a Hamilton cycle turns out to be surprisingly
difficult even for families of graphs defined by very simple algebraic construc-
tions. Two prominent examples of this phenomenon are the Kneser graph and
the bipartite Kneser graph (Kneser graphs were introduced by Lovász in his
celebrated proof of Kneser’s conjecture [23]). For integers n and k satisfying
k ≥ 1 and n ≥ 2k + 1, the Kneser graph K(n, k) has as vertices all k-element
subsets of [n] := {1, 2, . . . , n}, and an edge between any two vertices (=sets)
that are disjoint. The bipartite Kneser graph H(n, k) has as vertices all k-
element and all (n− k)-element subsets of [n], and an edge between any two
vertices where one is a subset of the other. The Kneser graphs and bipartite
Kneser graphs have long been conjectured to have a Hamilton cycle, apart
from one notorious exception, namely the Petersen graph K(5, 2):

Conjecture 1.1 For any k ≥ 1 and n ≥ 2k + 1, except for (n, k) = (5, 2),
the Kneser graph K(n, k) has a Hamilton cycle.

Conjecture 1.2 For any k ≥ 1 and n ≥ 2k + 1, the bipartite Kneser graph
H(n, k) has a Hamilton cycle.

In the numerous papers on the subject (see below), the sparsest among
these graphs, the so-called odd graph K(2k + 1, k) and the middle layer graph
H(2k + 1, k) have received particular attention, as proving Hamiltonicity for
the sparsest graphs is particularly intricate:

Conjecture 1.3 For any k ≥ 1, except for k = 2, the odd graph K(2k +1, k)
has a Hamilton cycle.

Conjecture 1.4 For any k ≥ 1, the middle layer graph H(2k + 1, k) has a
Hamilton cycle.

One of the main motivations for these conjectures is a classical and vastly
more general conjecture due to Lovász [22], which asserts that, apart from five
exceptional graphs (one of the exceptions K(5, 2) we already mentioned), every
connected vertex-transitive graph has a Hamilton cycle. A vertex-transitive
graph is a graph that ‘looks the same’ from the point of view of any vertex,
and Kneser graphs and bipartite Kneser graphs have this strong symmetry



property (and they are connected for the given range of parameters), so these
conjectures represent a highly nontrivial special case of Lovász’ conjecture.

1.2 Known results

Conjecture 1.3 was raised by Meredith and Lloyd [25] (see also [1]). In a
sequence of papers [3,4,6,18,14,24,25], the conjecture and its generalization,
Conjecture 1.1, were verified for ever increasing ranges of parameters. To date,
Conjecture 1.1 has been confirmed with the help of computers for all n ≤ 27
and all relevant values of k [30], and the best known general result is due to
Chen:

Theorem 1.5 ([5]) For any k ≥ 1 and n ≥ 2.62k + 1, the Kneser graph
K(n, k) has a Hamilton cycle.

As an important step towards settling Conjecture 1.3, Johnson showed
that the odd graph contains a cycle that visits almost all vertices:

Theorem 1.6 ([17]) There exists a constant c, such that for any k ≥ 1, the
odd graph K(2k + 1, k) has a cycle that visits at least a (1 − c√

k
)-fraction of

all vertices.

Conjecture 1.2 was raised independently by Simpson [33] and Roth (see
[10] and [16]). Since then, there has been steady progress on the problem
[4,16,34], and similarly to before, the conjecture has been confirmed for all
n ≤ 27 and all relevant values of k [30], and the best known general result is
due to Chen:

Theorem 1.7 ([5]) For any k ≥ 1 and n ≥ 2.62k + 1, the bipartite Kneser
graph H(n, k) has a Hamilton cycle.

Conjecture 1.4, also known as middle levels conjecture or revolving door
conjecture, originated probably with Havel [13] and Buck and Wiedemann [2],
but has also been attributed to Dejter, Erdős, Trotter [21] and various oth-
ers. This conjecture has attracted considerable attention over the years (see
e.g. [7,8,9,11,15,17,21,27,29,31,32]), and a proof of it has only been announced
very recently.

Theorem 1.8 ([26]) For any k ≥ 1, the middle layer graph H(2k +1, k) has
a Hamilton cycle.



1.3 Hamilton cycles in the hypercube

The main reason for the interest in the middle levels conjecture is its relation
to the hypercube graph and to Gray codes, two themes of fundamental interest
for combinatorialists (see the surveys [12] and [28], respectively). The hyper-
cube Q(n) is the graph which has as vertices all bitstrings of length n, and an
edge between any two bitstrings that differ in exactly one bit. Partitioning
the vertices of Q(n) into levels 0, . . . , n according to the number of 1-entries
in the bitstrings, and denoting by Q(n, k) the subgraph of Q(n) induced by all
vertices in level k and k+1, it is easy to see that H(2k+1, k) and Q(2k+1, k)
are isomorphic. So the middle levels conjecture asserts that the subgraph
Q(2k + 1, k) of the cube has a Hamilton cycle. Observe that Hamilton cycles
in the cube or subgraphs of it correspond to certain Gray codes, i.e., cyclic
sequences of binary code words with the property that any two consecutive
code words differ in exactly one bit. Clearly, Q(2k+1, k) is the only subgraph
of the cube induced by two consecutive levels that have the same size, and
where we can hope to find a Hamilton cycle. Nevertheless, the following is a
natural generalization of the middle levels conjecture (in a different direction
than Conjecture 1.2, cf. also [11]), which provides a nice structural insight
about the cube and establishes the existence of various additional families of
restricted Gray codes:

Theorem 1.9 For any n ≥ 3 and k ∈ {1, 2, . . . , n−2}, the graph Q(n, k) has
a cycle that visits all vertices in the smaller of the levels k and k + 1.

It was already noted in [13] that with a simple inductive construction,
Theorem 1.9 can be derived easily from Theorem 1.8. In fact, the results
presented in this extended abstract are proved using a further refinement of
this proof technique.

2 Our results

The main contribution of this work is a proof of Conjecture 1.2.

Theorem 2.1 For any k ≥ 1 and n ≥ 2k + 1, the bipartite Kneser graph
H(n, k) has a Hamilton cycle.

We also make some progress towards Conjecture 1.1 (and the special case
Conjecture 1.3), by generalizing and improving Theorem 1.6 as follows:

Theorem 2.2 For any k ≥ 1 and n ≥ 2k + 1, the Kneser graph K(n, k) has
a cycle that visits at least a 2k

n
-fraction of all vertices. In particular, for any



k ≥ 1, the odd graph K(2k + 1, k) has a cycle that visits at least a (1− 1
2k+1

)-
fraction of all vertices.

Note that the cycle guaranteed by Theorem 2.2 visits almost all vertices
of K(n, k), i.e., a (1− o(1))-fraction, whenever n = 2k + o(k).

3 Proof ideas

Our results are immediate consequences of the following lemma, illustrated in
Figure 1 below. This lemma therefore represents a powerful ‘bootstrapping’
method that extends Theorem 1.8 to a large range of other interesting graphs.
To state the lemma, we say that a path in the hypercube Q(n) is monotone,
if it visits at most one vertex in every level.

Lemma 3.1 For any k ≥ 1 and n ≥ 2k +1, there is a cycle C(n, k) of length
2
(

n
k

)
in the graph Q(n, k) ⊆ Q(n) that visits all vertices in level k, and a set

of
(

n
k

)
many vertex-disjoint monotone paths P(n, k) in Q(n), each of which

starts at a vertex of the cycle C(n, k) in level k + 1 and ends at a vertex in
level n− k.

Note that Lemma 3.1 is a strengthening of Theorem 1.9 (for the theorem,
the paths P(n, k) are ignored, and the cycle C(n, k) alone has the desired
properties).

Q(n)

C(n, k) ⊆ Q(n, k)

P(n, k)

k

k + 1

n− k

Fig. 1. Illustration of Lemma 3.1.

In this extended abstract we only sketch the proof of Lemma 3.1: The
proof proceeds by a straightforward induction: The cycle C(n, k) and the



corresponding paths P(n, k) are constructed from C(n−1, k), P(n−1, k) and
from C(n − 1, k − 1) and P(n − 1, k − 1) (for this the induction hypothesis
needs to be strengthened slightly, by enforcing and forbidding certain vertices
to be visited by the subgraphs C(n, k) and P(n, k)). One base case of the
induction (k, n) = (1, n) is easily verified ‘manually’, and the other base case
(k, n) = (k, 2k + 1) is exactly the middle levels conjecture, which we know to
be true by Theorem 1.8.

With Lemma 3.1 in hand, proving Theorems 2.1 and 2.2 is easy.

Proof of Theorem 2.1. Let n and k be as in the theorem, and let C(n, k)
and P(n, k) be the cycle and the set of paths given by Lemma 3.1. The
cycle C(n, k) visits all N :=

(
n
k

)
vertices in level k, and it has the form

(x1, x2, . . . , x2N), where the x2i−1 and the x2i, i = 1, . . . , N , are vertices in
level k and level k+1, respectively. Moreover, every x2i is obtained from x2i−1

or from x2i+1 (indices are considered modulo 2N) by flipping a single 0-bit to
a 1-bit. For i = 1, . . . , N consider the path from P(n, k) whose first vertex is
x2i, and let y2i be its end vertex in level n− k. As the path is monotone, y2i

is obtained from x2i by flipping (n− k)− (k + 1) = n− 2k− 1 many 0-bits to
1-bits. Now consider the cyclic sequence (x1, y2, x3, y4, x5, y6, . . . , x2N−1, y2N)
of vertices. Note that the vertices {x2i−1 | i = 1, . . . , N}, are all vertices in
level k, the vertices {y2i | i = 1, . . . , N} are all vertices in level n − k (the
paths from P(n, k) are vertex-disjoint). Moreover, every y2i is obtained from
x2i−1 or from x2i+1 by flipping n− 2k many 0-bits to 1-bits. Interpreting the
bitstrings in this sequence as characteristic vectors of subsets of [n], we thus
obtain the desired Hamilton cycle in H(n, k). �

Proof of Theorem 2.2. For k = 1 and n ≥ 3 the graph K(n, 1) is the
complete graph on n vertices and trivially has a Hamilton cycle. So let k ≥ 2
and n ≥ 2k+1, and let C(n−1, k−1) and P(n−1, k−1) be the cycle and the
set of paths given by Lemma 3.1. The paths in P(n− 1, k− 1) start in level k
and end in level (n−1)−(k−1) = n−k, and therefore have length n−2k ≥ 1.
The cycle C(n − 1, k − 1) visits all N :=

(
n−1
k−1

)
vertices in level k − 1, and it

has the form (x1, x2, . . . , x2N), where the x2i−1 and the x2i, i = 1, . . . , N , are
vertices in level k−1 and level k, respectively. Moreover, every x2i is obtained
from x2i−1 or from x2i+1 (indices are considered modulo 2N) by flipping a
single 0-bit to a 1-bit. For i = 1, . . . , N consider the path from P(n−1, k−1)
whose first vertex is x2i, and let y2i be the vertex of this path in level n−k−1
(the end vertex of this path is on the next higher level n− k). As the path is
monotone, y2i is obtained from x2i by flipping (n−k−1)−k = n−2k−1 many
0-bits to 1-bits. For i = 1, . . . , N , let x+

2i−1 be the bitstring obtained from x2i−1



by adding an additional 1-bit, and let y2i
+ be the bitstring obtained from y2i

by inverting all bits and adding an additional 0-bit. Note that x+
2i−1 and y2i

+

both have length n and contain exactly k entries equal to 1. Now consider the
cyclic sequence of vertices (x+

1 , y2
+, x+

3 , y4
+, x+

5 , y6
+, . . . , x+

2N−1, y2N
+). Note

that all vertices in this sequence are different (here we use that the y2i are all
different, as the paths from P(n− 1, k− 1) are vertex-disjoint). Moreover, for
every y2i

+ we have that at each position with a 1-bit, both x+
2i−1 and x+

2i+1 have
a 0-bit. Interpreting the bitstrings in this sequence as characteristic vectors of
subsets of [n], we thus obtain a cycle of length 2N = 2

(
n−1
k−1

)
in K(n, k). The

total number of vertices of K(n, k) is
(

n
k

)
, so the fraction of vertices visited by

the cycle is 2
(

n−1
k−1

)
/
(

n
k

)
= 2k

n
. �
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