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Abstract

In this paper we are interested in vertex partitioned ribbon graphs, which are a
generalization of ribbon graphs that are studied in some theoretical physics models.
We define a Hopf algebra of vertex partitioned ribbon graphs, then go on to describe
how a natural generalization of the Bollobás-Riordan polynomial arises from this
Hopf algebra. Using some appropriate Hopf algebraic characters we also prove the
universality of our polynomial
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1 Hopf algebra of partitioned ribbon graphs

We study here vertex partitioned ribbon graphs. These are a natural general-
ization of ribbon graphs that appear in theoretical physics (in the multi-trace
matrix models, see, for example, [5]). In addition to the physical applications,
we will see that vertex partitioned ribbon graphs are useful in the study of
deletion/contraction identities for the Bollobás-Riordan polynomial of [1]. In
particular we will use them to describe a Hopf algebraic approach to the Bol-
lobás-Riordan polynomial akin to that given for the Tutte polynomial of a
matroid from [2].

A ribbon graph G = (V (G), E(G)) is a surface with boundary, repre-
sented as the union of two sets of discs: a set V (G) of vertices and a set of
edges E(G) such that vertices and edges intersect in disjoint line segments,
each such line segment lies on the boundary of precisely one vertex and pre-
cisely one edge, and every edge contains exactly two such line segments (see
Fig. 1, and [3] for additional background). Here we only consider orientable
ribbon graphs (i.e., those that are orientable when considered as surfaces).

Definition 1.1 A (vertex) partitioned ribbon graph G = (G,P) is a
ribbon graph G equipped with a partition P of its set of vertices V (G). We
refer to the blocks of the partition as parts. Its shadow G is the graph whose
vertices are the parts of P with one edge between the parts for each edge of
G between vertices in those blocks.

Note that the edges of the G are in 1-1 correspondence with the edges of
G. It is convenient to graphically represent the sets of the partition as balls
on which the vertices of G are drawn as in Fig. 1.

For a partitioned ribbon graph G, its genus is g(G) = k(G) − 1
2

(
v(G) −

e(G) + f(G)
)
, rank is r(G) = v(G)− k(G) and nullity is n(G) = e(G)− r(G)

where as usual, e, v, f and k represent the number of edges, vertices, boundary
components and connected components. We will also consider the rank an
nullity of its shadow graph G,

We say that G is a join of G′ if G can be obtained from G′ by identifying
an arc on the boundary of a vertex in one component of G′ with an arc on
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(a) A vertex partioned
ribbon graph G.

(b) Its underlying ribbon
graph G.

(c) Its shadow G.

Fig. 1. A vertex partitioned ribbon graph, its underlying ribbon graph and shadow

the boundary of a vertex in a different component (the identified vertices are
merged into a single vertex of G). Note that rank, nullity and genus take the
same value on G and G′.

Let H̃ be the vector space over a zero characteristic ground field K that
is freely generated by partitioned ribbon graphs. Defing a product as the
disjoint union endows H̃ with an algebra structure. Moreover, one can define
a coalgebra structure wiht the coproduct

Δ(G) =
∑

A⊆E(G)

G|A ⊗G/A, (1)

where the restrictionG|A is the partitioned ribbon graph obtained by removing
in G all the edges not in A and discarding isolated vertices. The vertex
partition ofG|A is induced fromG. The contraction G/A is defined by, for each
boundary component of G|A ⊆ G, attaching a disc, which will form a vertex
of G/e, by identifying its boundary component with the curve, then deleting
the vertices and edges in the ribbon subgraph G|A. The vertex partition is
obtained by, for each new vertex v of G/e, substituting v in each part of G for
each vertex it has replaced in the construction of G/e then taking the union
of all parts containing v. See Fig. 2.

The coproduct (1) leads to a Hopf algebra structure on partitioned ribbon
graphs (for generalities on incidence Hopf algebras, see [6]). For this we iden-

tify graphs that differ by joins. We introduce the ideal J ⊆ H̃ generated by
the differences between partitioned ribbon graphs and their joins. This allows
us to define a Hopf algebra structure on the space of equivalence classes of
partitioned ribbon graphs differing by joins.

Proposition 1.2 The coproduct (1) induces on H = H̃/J the structure of a
unital, connected, commutative Hopf algebra graded by the number of edges.



→

(a) Contracting a non-loop edge.

→

(b) Contracting a loop.

Fig. 2. Edge contraction.

Let us give a sketch of the proof. Since J is a Hopf ideal, one has Δ(J ) ⊆
H ⊗ J + J ⊗ H. This implies that the coproduct Δ is well-defined on the
quotient H = H̃/J . Note that one has the grading H = ⊕nHn, where Hn

is spanned by the classes of graphs with n edges. This grading is compatible
with the product and the coproduct. The unit 1 is the class of the edgeless
partitioned ribbon graphs and the counit vanishes except on 1. Finally, the
existence of an antipode follows from a standard inductive construction valid
in commutative, graded and connected bigebras.

To simplify the notation, we identify graphs with their equivalence classes.
Thus, the elements of H are identified with partitioned ribbon graphs and the
coproduct (1) will acts on these equivalent classes. Example 1.3 below gives
an illustration of this.

Example 1.3

Δ = ⊗ 1 + 2 ⊗ + 1⊗ (2)

A character χ ofH is a multiplicative linear map of it into K, so χ(GG′) =
χ(G)χ(G′). Since H is a commutative Hopf algebra, characters form a group
for the convolution product defined by χ∗χ′ = (χ⊗χ′)◦Δ. An infinitesimal



character δ of H is a linear map to K such that δ(GG′) = δ(G)ε(G′) +
ε(G)δ(G′). Infinitesimal characters form a Lie algebra and the convolution
exponential exp∗(δ) =

∑
n≥0

δ∗n
n!

(a finite sum when evaluated on any G ∈ H)
establishes a one to one correspondence between characters and infinitesimal
characters.

There are three (orientable) partitioned ribbon graphs with one edge: the
coloop (two vertices in different parts), the loop (one vertex) and the semi-
loop (two vertices in one part). These give rise to three infinitesimal charac-
ters:

δc(G) =

⎧⎨
⎩ 1 if G=

0 otherwise
δl(G) =

⎧⎪⎨
⎪⎩

1 if G=

0 otherwise

δs(G) =

⎧⎨
⎩ 1 if G=

0 otherwise

(3)

Proposition 1.4 The convolution exponential has the following interpreta-
tion.

exp∗ {aδc + bδl + cδs} (G) = ar(G) bn(G)−g(G) cn(G)−n(G)+g(G). (4)

For any invertible elements λ, μ, ν ∈ K, let us define the Hopf algebra auto-
morphism of H by

Ψλ,μ,ν(G) = λr(G) μn(G)−g(G)νn(G)−n(G)+g(G) G. (5)

One then has Ψλ,μ,ν(exp∗ {aδc + bδl + cδs}) = exp∗ {λaδc + μbδl + νcδs}.

2 An extension of the Bollobás-Riordan polynomial

The Bollobás-Riordan polynomial [1] of a ribbon graph G is defined as

RG(x, y, z) =
∑

A⊆E(G)

xr(G)−r(A)yn(A)z2g(A), (6)

where the exponents refer to the spanning ribbon subgraphs of G defined by
the edge set A. We now extend the Bollobás-Riordan polynomial to parti-
tioned ribbon graphs.

Definition 2.1 The extended Bollobás-Riordan polynomial of a parti-



tioned ribbon graph G is

RG(x, y, z) =
∑

A⊆E(G)

xr(G)−r(A)yn(A)z2
(
n(A)−n(A)+g(A)

)
, (7)

where A is the shadow graph of the spanning vertex partitioned ribbon graph
defined by A.

This polynomial reduces to the ribbon graph Bollobás-Riordan polynomial
if there is exactly one vertex in each part (i.e. one disc on each ball) since in
this case r(A) = r(A) and n(A) = n(A). Moreover, when z = 1 we recover
the Tutte polynomial (up to a shift of x and y by one) of the shadow graph.
Alternatively, when xyz2 = 1 there is no reference to A and the partition
become irrelevant (up to a prefactor).

Theorem 2.2 For any partitioned ribbon graph G,

RG(x, y, z) = exp∗
{
δc + yδl + yz2δs

} ∗ exp∗ {xδc + δl + δs} (G). (8)

The proof of this theorem amounts to rewriting (7) using Proposition 1.4.

Corollary 2.3

RG(x, y, z) =
∑

A⊆E(G)

RG|A(−1, y, z)RG/A(x,−1,−1). (9)

This follows from the convolution identity

exp∗
{
δc + yδl + yz2δs

} ∗ exp∗ {xδc + δl + δs} =

exp∗
{
δc + yδl + yz2δs

}∗exp∗ {−δc + δl + δs}∗exp∗ {δc − δl − δs}∗exp∗ {xδc + δl + δs} ,
(10)

which we then rewrite as a sum over edge sets.

Example 2.4 The convolution identity for the extended Bollobás-Riordan
polynomial of a genus one bouquet is shown below.

1+2y+y2z2︷ ︸︸ ︷
R (x, y, z) =

1+2y+y2z2︷ ︸︸ ︷
R (−1, y, z) + 2

1+y︷ ︸︸ ︷
R (−1, y, z)

1+(−1)×(−1)2=0︷ ︸︸ ︷
R (x,−1,−1) +

1−2+1=0︷ ︸︸ ︷
R (x,−1,−1)

(11)



3 Universality of the polynomial RG

Let PG(a, b, c, a
′, b′, c′) be a six variable polynomial defined on partitioned rib-

bon graph that obeys the following contraction/deletion rules (if G is edgeless,
we define PG = 1)

PG(a, b, c, a
′, b′, c′) = θ(e)PG/e(a, b, c, a

′, b′, c′)+θ′(e)PG\e(a, b, c, a′, b′, c′), (12)

where

θ(e) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

a if e is neither a loop nor a semi-loop

b if e is a loop

c if e is a semi-loop

θ′(e) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

a′ if e is a bridge (in G)

b′ if e is a planar edge

c′ if e is a non-planar edge

(13)
Here we call an edge e planar (resp. non planar) if its ends are attached
to the same boundary component of G\e (resp. its ends are attached to two
different boundary components of G\e). Moreover, the edge e is a bridge if
G\e has one more connected component than G. Note that there are seven
instead of nine case to study since an edge cannot be at the same time a loop
(or a semi-loop) and a bridge.

We now state our universality theorem (see [1,4] for the universality theo-
rem for the ribbon graph Bollobás-Riordan polynomial):

Theorem 3.1 Let PG(a, b, c, a
′, b′, c′) be a six variable partitioned ribbon graph

polynomial which is multiplicative over disjoint unions and joins, and obeys
the contraction/deletion relations (12) for any edge (normalized to unity for
edgeless graphs). One then has:

PG(a, b, c, a
′, b′, c′) = ar(G) b′n(G)−g(G) c′n(G)−n(G)+g(G) RG

(a′
a
,
b

b′
,
c

c′

)
. (14)

To establish this result, we define the Hopf algebra character χ by χ(G) =
PG(sa, sb, sc, sa

′, sb′, sc′). The contraction/deletion relations (12) then imply
the following differential equation:

dχ

ds
=

(
aδc + bδl + cδs

) ∗ χ+ χ ∗ (
a′δc + b′δl + c′δs

)
. (15)

Since the polynomial is normalized for edgeless graphs, χ = ε (counit) for
s = 0, the solution of the differential equation writes:

χ = exp∗ {saδc + sbδl + scδs} ∗ exp∗ {sa′δc + sb′δl + sc′δs} . (16)



Acting then with the automorphism Ψ1/a,1/b′,1/c′ (assuming that none of these
numbers vanish) as in (5) yields

Ψ1/a,1/b′,1/c′(χ) = exp∗

{
sδc + s

b

b′
δl + s

c

c′
δs

}
∗exp∗

{
s
a′

a
δc + sδl + sδs

}
. (17)

Evaluating both sides on a partitioned ribbon yields the announced result
(14), since the action of the automorphism reduces to a multiplication by

a−r(G) b′−n(G)+g(G) c′−n(G)+n(G)−g(G). If a, b′ or c′ vanish, the result still holds
since the negative powers cancel.

Finally, let us notice that the extended Bollobás-Riordan polynomial also
obeys contraction/deletion relations for any edge.

Example 3.2

1+2y+y2z2︷ ︸︸ ︷
R (x, y, z) =

y(1+yz2)︷ ︸︸ ︷
yR (x, y, z) +

1+y︷ ︸︸ ︷
R (x, y, z) (18)
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