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Abstract

A framework for a graph G = (V,E), denoted G(p), consists of an assignment
of real vectors p = (p1, p2, . . . , p|V |) to its vertices. A framework G(p) is called

universally completable if for any other framework G(q) that satisfies pTi pj = qTi qj
for all i = j and (i, j) ∈ E there exists an isometry U such that Uqi = pi for all
i ∈ V . A graph is called a core if all its endomorphisms are automorphisms. In
this work we identify a new sufficient condition for showing that a graph is a core
in terms of the universal completability of an appropriate framework for the graph.
To use this condition we develop a method for constructing universally completable
frameworks based on the eigenvectors for the smallest eigenspace of the graph. This
allows us to recover the known result that the Kneser graph Kn:r and the q-Kneser
graph qKn:r are cores for n ≥ 2r + 1. Our proof is simple and does not rely on the
use of an Erdős-Ko-Rado type result as do existing proofs. Furthermore, we also
show that a new family of graphs from the binary Hamming scheme are cores, that
was not known before.
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1 Introduction

Throughout we denote [n] = {1, . . . , n}. A matrixX is called positive semidef-
inite, denoted X � 0, if all its eigenvalues are nonnegative. A framework for a
graph G = ([n], E) consists of an assignment of real vectors p = (p1, p2, . . . , pn)
to the vertices of G; We denote this by G(p). Given a framework G(p) define
Cp(G) to be the set of all n-by-n positive semidefinite matrices that satisfy
Xij = pTi pj for all i = j and (i, j) ∈ E. The Gram matrix of the vectors
p1, . . . , pn, denoted Gram(p1, . . . , pn), is the n-by-n matrix whose ij entry is
given by pTi pj for all i, j ∈ [n]. A framework G(p) is called universally com-
pletable if Gram(p1, . . . , pn) is the unique element in the set Cp(G).

The notion of universally completability was introduced and studied in [4]
due to its relevance to the psd matrix completion problem: Given a graph
G = (V = [n], E) and a vector a ∈ R

E∪V indexed by the nodes and the edges
of G, decide whether there exists a real symmetric n×n matrix X satisfying

Xij = aij for all {i, j} ∈ V ∪ E, and X is positive semidefinite. (1)

Universally completable frameworks provide a systematic method for con-
structing partial psd matrices that they admit a unique completion to a fully
specified psd matrix. Such partial matrices have been a crucial ingredient
for the study of two minor-monotone graph parameters considered in [5,2],
defined in terms of ranks of psd matrix completions of G-partial matrices.

As noted in [4] the notion of universal completability is closely related to
the well-studied notion of universal rigidity. Recall that a framework G(p) is
called universally rigid if for any other framework G(q) satisfying ‖qi− qj‖2 =
‖pi − pj‖2 for all (i, j) ∈ E then ‖pi − pj‖2 = ‖qi − qj‖2 for all i, j ∈ [n].
Geometrically this means that G(p) can be obtained by G(q) by a rigid motion
of the Euclidean space.

To any framework G(p) we associate the extended framework, denoted
(∇G, p̂), where ∇G is the graph obtained from G by adding an apex node
(labeled 0) and p̂0 = 0 and p̂i = pi for all i ∈ [n]. It was shown in [4] that
G(p) is universally completable if and only if (∇G, p̂) is universally rigid.
Nevertheless, it is not known whether this equivalence extends to the more
general setting of tensegrity frameworks.

One of the main results in [4] is a sufficient condition for showing that a
framework G(p) is universally completable. In the special case of bar frame-
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works (which we are concerned with in this paper), this turns out to be equiv-
alent with Connelly’s sufficient condition for universal rigidity [1].

Theorem 1.1 Consider a graph G = ([n], E) and a framework G(p) in R
d

such that p1, . . . , pn span R
d. Assume there exists Z ∈ Sn satisfying:

(i) Z is positive semidefinite;

(ii) Zij = 0 whenever (i, j) �∈ E;

(iii)
∑

j∈[n] Zijpj = 0 for all i ∈ [n];

(iv) Z has corank d;

(v) For any d× d symmetric matrix R,

pᵀiRpj = 0 for i = j and (i, j) ∈ E =⇒ R = 0. (2)

Then the framework G(p) is universally completable.

A graph homomorphism is an adjacency preserving map from the vertex
set of one graph to that of another. In other words, if G and H are graphs and
ϕ is a function from V (G) to V (H), then ϕ is a homomorphism if ϕ(u) ∼ ϕ(v)
in H whenever u ∼ v in G.

An important notion in the theory of graph homomorphisms is that of
a core. A graph G is a core if every homomorphism from G to itself is an
automorphism of G. A homomorphism from a graph to itself is referred to
as an endomorphism, and an equivalent definition of a core is a graph which
admits no endomorphism to a proper subgraph. For every graph G there
exists a unique core G• such that G admits homomorphisms both to and from
G•, and G• is called the core of G.

For a graph G, the neighbourhood of a vertex u, denoted NG(u), is the
set of vertices in G adjacent to u. A homomorphism from a graph G to a
graph H is said to be locally injective if it acts injectively on NG(u) for all
u ∈ V (G). Since homomorphisms preserve adjacency, we can equivalently
say that a homomorphism ϕ is locally injective if and only if ϕ(u) �= ϕ(v)
whenever u and v are at distance two.

For connected graphs, locally injective endomorphisms are always auto-
morphisms:

Theorem 1.2 [6] If G is connected then every locally injective endomorphism
of G is an automorphism.

From the above theorem we immediately get:



Corollary 1.3 A connected graph G is a core if and only if all of its endo-
morphisms are locally injective.

This work builds on the following theorem which establishes an unexpected
relationship between universal completability and graph cores.

Theorem 1.4 Consider a graph G = ([n], E) and suppose there exists a uni-
versally completable framework G(p) with the following properties: (i) pi �= pj
whenever d(i, j) = 2 (ii) 〈pi, pi〉 is constant for all i ∈ [n] and (iii) 〈pi, pj〉 is
constant for all (i, j) ∈ E. Then G is a core.

The proof of Theorem 1.4 is omitted due to space limitations.

Our main objective in this work is to apply the sufficient condition given
in Theorem 1.4 to show that certain families of graphs are cores. To achieve
this we need a systematic way to generate universally completable frame-
works. These frameworks should additionally satisfy conditions (i) − (iii) of
Theorem 1.4 but this is an additionally difficulty we address later.

1.1 Least Eigenvalue Frameworks

We now give a method to construct universally completable frameworks that
uses the eigenvectors that correspond to the minimum eigenvalue of the adja-
cency matrix of the graph.

Definition 1.5 Consider a graph G, let A be its adjacency matrix and sup-
pose it has minimum eigenvalue τ of multiplicity m. Let u1, . . . , um be an
orthonormal basis of the τ -eigenspace and let P be the n ×m matrix whose
columns are the ui’s. For i ∈ [n] let pi ∈ R

m, be the rows of P . We call G(p)
a least eigenvalue framework for G.

As we now show least eigenvalue frameworks are good candidates for being
universally completable. This is essentially because the matrix Z = A − τI
satisfies assumptions (i)− (iv) of Theorem 1.1.

Theorem 1.6 Let G(p) be a least eigenvalue framework for G. Then G(p)
is universally completable if and only if it satisfies: pᵀiRpj = 0 for all i =
j and i ∼ j implies that R = 0.

Proof. We only prove sufficiency. Suppose that no such nonzero matrix R
exists. Let A be the adjacency matrix of G and let τ be its least eigenvalue.
We apply Theorem 1.1 with Z = A−τI. Clearly, A−τI � 0 and so condition
(i) holds. Trivially condition (ii) also holds. Condition (iii) can be rewritten
as ZP = 0 where P is the matrix whose rows are the pi. But by the definition



of least eigenvalue framework the columns of P are τ -eigenvectors of A and
therefore (A− τI)P = 0. For condition (iv), note that the corank of A− τI is
equal to the dimension of the τ eigenspace of A, which is exactly the dimension
the pi live in and span. For Z = A−τI, condition (v) is exactly the implication
in the theorem statement that we assumed was true. By Theorem 1.1 G(p)
is universally completable. �

1.2 1-Walk-Regular Graphs

Having determined a way to generate universally completable frameworks (cf.
Theorem 1.6) our next goal is to identify graph classes with sufficient regularity
so as to guarantee that their least eigenvalue frameworks satisfy conditions
(i) − (iii) of Theorem 1.4. In this section we focus on the class of 1-walk-
regular graphs: A graph with adjacency matrix A is called 1-walk-regular if
there exist ak, bk ∈ N for all k ∈ N such that Ak ◦ I = akI and Ak ◦ A = bkA.
Here we use ◦ to denote the Schur matrix product.

Note that any 1-walk-regular graph is a2 regular. Also, any graph which is
vertex- and edge-transitive is easily seen to be 1-walk-regular. Other classes
of 1-walk-regular graphs include distance regular graphs and, more generally,
graphs which are a single class in an association scheme. We now show that
least eigenvalue frameworks of 1-walk-regular graphs satisfy assumptions (ii)
and (iii) of Theorem 1.4.

Theorem 1.7 Let G = ([n], E) be 1-walk-regular with minimum eigenvalue
τ of multiplicity m. For any least eigenvalue framework G(p) we have that
〈pi, pi〉 = m

n
for i ∈ [n] and 〈pi, pj〉 = τm

na2
for (i, j) ∈ E.

Proof. Let Eτ be the orthogonal projector onto the τ -eigenspace ofG. Clearly
Eτ = Gram(p1, . . . , pn). Since the matrix Eτ is a polynomial in A, and since
G is 1-walk-regular there exist numbers a and b such that Eτ ◦I = aI and Eτ ◦
A = bA. Thus 〈pi, pi〉 = a for all i ∈ [n] and 〈pi, pj〉 = b for all (i, j) ∈ E.
Since Eτ is a projector we have na = Trace(Eτ ) = rank(Eτ ) = m and thus
a = m/n. Similarly using Eτ ◦ A = bA it follows that b = τm

na2
. �

Since τ < 0 it follows that τm
na2

< 0. This will be important in the next
section. Combining Theorem 1.6 with Theorem 1.7 we obtain a sufficient
condition for showing that a 1-walk-regular graph is a core.

Theorem 1.8 Let G be 1-walk-regular and G(p) a least eigenvalue framework
for G. Assume that G(p) satisfies: (i) pi �= pj whenever d(i, j) = 2 and (ii)
pᵀiRpj = 0 for all i = j and i ∼ j implies R = 0. Then G is core.



2 Applying the Sufficient Condition

2.1 Kneser and q-Kneser graphs

The Kneser graph Kn:r has as vertices the r-subsets of [n]; Two vertices are
adjacent if the corresponding sets are disjoint. The q-Kneser graph qKn:r has
the r-dimensional subspaces of the finite vector space F

n
q as its vertices, and

two subspaces are adjacent if they are skew, i.e. their intersection is the zero
subspace. As a first application of Theorem 1.8 we show that Kneser and
q-Kneser graphs are cores.

Theorem 2.1 For n ≥ 2r + 1, both Kn:r and qKn:r are cores.

Even though this result is known, our proof method is interesting as it does
not rely on the use of an Erdős-Ko-Rado type result, as do existing proofs [3].

Kneser and q-Kneser graphs are easily seen to be 1-walk-regular since they
are both edge and vertex transitive. By Theorem 1.8 it suffices to exhibit a
least eigenvalue framework that satisfies assumptions (i) and (ii). We only
sketch the proof for q-Kneser graphs, the proof for Kneser graphs being similar.

Let P be a matrix with rows indexed by the r-dimensional subspaces of Fn
q

(i.e. the vertices of qKn:r) and columns by the lines (1-dimensional subspaces)
of Fn

q defined by PS,� = α if � ⊆ S and β if � ∩ S = {0}.
Furthermore suppose that α and β are chosen such that the row sum is

zero. The precise values of α and β are not important but one suitable choice

is α = [r]q − [n]q and β = [r]q, where [k]q =
qk−1
q−1

=
∑k−1

i=0 q
i is the number of

lines contained in a k-dimensional subspace of Fn
q .

It is known that the columns of P span the least eigenspace of qKn:r. To
any vertex of qKn:r we associate the S-row of P ; we denote this by pS ∈ R

[n]q .
Notice that for S �= T we have that pS �= pT . Furthermore, notice that the
vectors pS do not span R

[n]q since they are all orthogonal to the all ones vector
1. In fact the vectors pS actually span {1}⊥.

Note that to apply Theorem 1.1 it is sufficient for the vectors p1, . . . , pn to
span a space of dimension d, not necessarily lie in R

d. The theorem still holds
by the same proof, however we must change R from a d× d symmetric matrix
to a symmetric linear map from span(p) to itself. Thus it remains to show:

Theorem 2.2 Let R : {1}⊥ → {1}⊥ be a linear map such that

pᵀSRpT = 0 for all S, T ∈ V (qKn:r) such that S ∼ T. (3)

Then R = 0.



The proof of Theorem 2.2 is omitted due to space limitations.

2.2 Hamming graphs

The graphs we will consider in this section are Cayley graphs for Zn
2 , and more

specifically graphs from the binary Hamming scheme. In particular, we mainly
focus on the Cayley graph for Zn

2 whose connection set contains all elements
of weight n − k for some k ≤ n. This graph is bipartite if n − k is odd,
and so we will implicitly assume that n − k is even throughout this section,
unless otherwise noted. Also, if k ≥ 1 and n − k is even, then the graph is
not bipartite and has two isomorphic components corresponding to the even
and odd Hamming weight elements of Zn

2 . We will refer to the component
consisting of the even weight vertices as Hn,k. These vertices form a subgroup
isomorphic to Z

n−1
2 and this is therefore still a Cayley graph. We will show

that Hn,k is a core if k ∈ {1, 2, 3}, n ≥ 3k and n − k is even. To the best of
our knowledge this class of graphs were not known to be cores before.

Note that Hn,k is arc transitive and therefore 1-walk-regular; so Theo-
rem 1.8 applies here. Unlike the example of the q-Kneser graphs in which we
started with a least eigenvalue framework and then proved that it satisfied (2),
here we will begin with a framework that satisfies (2) and then prove that it is
a least eigenvalue framework. The framework p = (px : x ∈ V (Hn,k)) ⊆ R

n we
will use is the following: To vertex x of Hn,k we assign px defined entrywise as
(px)i = (−1)xi for all i ∈ [n]. Note that these vectors are not normalized, but
this will not affect our arguments and we can simply divide by

√
n whenever

necessary. It is not hard to see that, after normalization, this vector assign-
ment has constant inner product 2k−n

n
on the edges of Hn,k. Moreover, this

framework is injective and one can show that span(px : x ∈ V (Hn,k)) = R
n.

It remains to show the following:

Lemma 2.3 Let px for x ∈ V (Hn,k) be defined as above, and let R be an n×n
matrix such that pᵀxRpy = 0 whenever x = y or x ∼ y. Then R = 0. Moreover,
for k ∈ {1, 2, 3}, n ≥ 3k, and n−k even the framework p = (px : x ∈ V (Hn,k))
is a least eigenvalue framework for Hn,k.

As a Corollary of Lemma 2.3 we get that:

Theorem 2.4 For k ∈ {1, 2, 3}, n ≥ 3k, and n − k even the graph Hn,k is
a core.
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