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Abstract

Erdés and Pach (1983) asked if there is some constant C' > 0 such that for any
graph G on Cklnk vertices either G or its complement G has an induced sub-
graph on k vertices with minimum degree at least 3(k — 1). They showed that the
above statement holds with Ck? in place of CkInk but that it does not hold with
Cklnk/Inlnk. We show that it holds with Ck In? k, answering their question up
to a In k factor.
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1 Introduction

Recall that the (diagonal, two-colour) Ramsey number is defined to be the
smallest integer R(k) for which any graph on R(k) vertices is guaranteed to
contain a homogeneous set of order k — that is, a set of k vertices corre-
sponding to either a complete or independent subgraph. The search for better
bounds on R(k), particularly asymptotic bounds as k — oo, is a challeng-
ing topic that has long played a central role in combinatorial mathematics
(see [3,5]).

We are interested in a degree-based generalisation of R(k) where, rather
than seeking a clique or coclique of order k, we seek instead an induced sub-
graph of order (at least) k& with high minimum degree (clique-like graphs) or
low maximum degree (coclique-like graphs). Erdés and Pach [1] introduced
this class of problems in 1983, and called them quasi-Ramsey problems. They
for instance showed that gradually relaxing the degree requirement reveals a
spectrum of Ramsey-type problems along which there is a sharp change in
asymptotics at a certain point. Naturally, this point of change corresponds to
a degree requirement of half the order of the subgraph sought.

The topic lay essentially dormant for decades, but we recently revisited
it together with Pach [4]. In particular, we refined our understanding of the
threshold for mainly what we referred to in [4] as the variable quasi-Ramsey
numbers (which corresponds to the parenthetical ‘at least’ above). For any
v > 0 and positive integer k, we showed that any graph G or its complement
contains as an induced subgraph some graph on ¢ > k vertices with minimum
degree at least £(¢ — 1) 4 v provided that G has at least k90%) vertices, and
this is in a sense sharp [4, Theorem 3].

In the present work we instead focus on the harder version of this problem,
the determination of what we have called the fized quasi-Ramsey numbers
(where ‘exactly’ takes place of the parenthetical ‘at least’ above). Using a
result on graph discrepancy, Erdés and Pach proved that there is a constant
C > 0 such that for any graph G on at least Ck? vertices either G or its
complement G has an induced subgraph on k vertices with minimum degree
at least $(k — 1). With an unusual random graph construction, they also
showed that the previous statement does not hold with C’klnk/Inlnk in
place of C'k? for some constant C’ > 0. They asked if it holds instead with
CkInk. Our main contribution here is to affirm this, up to a logarithmic
factor, by showing the following.

Theorem 1.1 There exists a constant C' > 0 such that for k large enough
and any graph G on CklIn®k vertices, either G or its complement G has an



induced subgraph on k vertices with minimum degree at least %(k —1).

Our proof of Theorem 1.1 has a number of different ingredients, including
the use of graph discrepancy, a probabilistic thinning result, and a greedy algo-
rithm that was inspired by similar procedures for max-cut and min-bisection.

To abide by page limits, we have had to omit one part of the proof. The
missing details are available at http://arxiv.org/abs/1411.4459.

2 An auxiliary result via discrepancy

Our first step in proving Theorem 1.1 will be to apply the following result.
This is a bound on a variable quasi-Ramsey number, which is similar to The-
orem 3(a) in [4]. The idea of the proof of this auxiliary result is inspired by
the sketch argument for Theorem 2 in [1], in spite of the error contained in
that sketch (cf. [4]).

Theorem 2.1 For any constant v > 0, there exists a constant C = g(y) > 1
such that for any graph G on Cklnk vertices, G or its complement G has an
induced subgraph on € > k wvertices with minimum degree at least %(ﬁ -1+

vvie—1.

We use a result on graph discrepancy to prove Theorem 2.1. Given a graph
G = (V, E), the discrepancy of a set X C V is defined as

1/1X]
D(X) = e(X) — =
0 =0 -3(1)).
where e(X) denotes the number of edges in the subgraph G[X] induced by X.
We use the following result of Erdds and Spencer [2, Ch. 7.

Lemma 2.2 (Theorem 7.1 of [2]) Provided that n is large enough, then if
te{l,...,n}, any graph G = (V, E) of order n satisfies

v In(5n/t).

Proof of Theorem 2.1 (Sketch). Let G = (V, E) be any graph on at least
N = [CklInk] vertices for a sufficiently large choice of C. For any X C V
and v > 0, we define the following skew form of discrepancy:

t3/2
D(S)| > —
Sgrrvl%ﬁ' () 103

Dy (X) = ‘6<X) - %(';ﬂ) ‘ X PR,
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We now construct a sequence (Hy, Hy, ..., H;) of graphs as follows. Let H
be G or G. At step i + 1, we form H,,, from H; = (V;, E;) by letting X; C V;
attain the maximum skew discrepancy D, and setting Viy; := V; \ X; and
Hiyy := H[V;11]. We stop after step ¢ + 1 if [Vi41| < $N. Let IT C {1,...,t}
be the set of indices ¢ for which D(X;) > 0. By symmetry, we may assume

1
> 1%l = N (1)
ielt
Claim 2.3 Foranyi € I* andz € X;, degy (z) > 3(|X;|—1)+v(|X;|—1)"2

Proof. Write |X;| = n;. We are trivially done if n; = 1, so assume n; > 2.
Suppose « € X; has strictly smaller degree than claimed and set X/ := X;\{z}.
Then, since ¢ € I,

1/n;, —1
D)) > e(X}) = 5 (™) ) —wlni = 1)
2 2
L (n;
>e(X;) — 5(2) —vvn; — 1 —wv(n; —1)%2
Note that n¥* > n}/* + (n; — 1)3/2, which by the above implies D, (X!) >
D, (X;), contradicting the maximality of D, (X;). O

Claim 2.3 implies that we may assume for each i € I that |X;| < k —1, or
else we are done. Writing It = {iy,...,i,}, we can show the following.

Claim 2.4 For any ( € {1,...,m -3}, D(X,,,,) < 2D(X,,).

This slightly technical claim is in fact the engine of this proof, and contains the
essential application of Lemma 2.2; however, to abide by space restrictions,
we have chosen to omit its justification.

Claim 2.4 implies that (5/6)™V/3D(X;,) > D(X;,) > 1 (assuming for
simplicity m = 1 (mod 3)), which then implies

£+3)

Sm(D(X;)) 6
m-1s =65 =@ tE D

By (1), we deduce that at least one of the m sets X; with i € I satisfies

Nn(6/5)

X;| >
Xl = 251n k



This last quantity is at least k by a choice of C' sufficiently large, contradict-
ing our assumption that |X;| < k — 1 for each ¢ € I". This completes the
argument. g

3 Proof of Theorem 1.1

The proof of the theorem entails running an algorithm, one of whose stopping
criteria is fulfilment of the hypothesis (for the right parameters) of the follow-
ing thinning result from [4]. When that happens, we can immediately apply
the result to obtain a k-subset of vertices of the desired type. We remark that
the following has a short, probabilistic proof.

Lemma 3.1 ([4]) For any 0 < c <1 and e > 0, let k be large enough that
exp(3e?(k—1)) > k. If H is a graph of order { > k such that 5(H) > cl, then
there exists S C V(H) of order k such that 6(H[S]) > (¢ —¢)(k —1).

By ‘right parameters’ above, we mean those in the following specific form
of Lemma 3.1.

Corollary 3.2 Let H be a graph of order ¢ > k. If ¢ < 2k and §(H) >
T(0=1)+8+/(k — 1)Ink+8, then there exists S C V(H) of order k such that
6(H[S]) > 3(k—1)++/(k—1)Ink.

As a subroutine, we make use of the following algorithm which is inspired
by the greedy algorithm for max-cut or min-bisection.

Lemma 3.3 Let G = (V, E) be a graph of order n with 6(G) > 1(n — 1)+t
for some number t. Let a € [0,1] and let a,b € N such that a +b = n. Then
either there exists A C 'V of size a such that §(G[A]) > 3a — 1+ at, or there
exists B CV of size b such that §(G[B]) > 5b— 1+ (1 — a)t.

Proof. Take any A C V of size a and let B := V \ A. If there exists v € A
with deg,(z) < 3a — 1+ at and y € B with degg(y) < 30— 1+ (1 — a)t,
then move z to B and y to A, i.e. swap x and y. Note that when there is no
such pair of vertices z,y we are done. We just need to prove that, if we keep
iterating, then this procedure must stop at some point.

Consider the number of edges in G[A] before and after we swap x and .
The number of edges in G[A] increases by at least

deg,(y) — degy(w) — 1> 6(G) — degp(y) — degy(x) — 1> 1/2,

(where we subtracted 1 in case x and y are adjacent). This shows that we
cannot continue to swap pairs indefinitely. O



At last we are ready to prove the main result. In fact, we prove something
stronger.

Theorem 3.4 There exist constants D, D' > 0 such that Jor k large enough
and any graph G on Dk1In?k vertices, G or its complement G has an induced
subgraph on k vertices with minimum degree at least 5(k—1)+D'vVk — 1/ Ink.

Proof. Set m :=400kInk, D := 800C, where C' = C'(2) is defined according
to Theorem 2.1, and D' := 1/(4v/D). By Theorem 2.1, since CmInm <
800CkIn*k < DkIn*k < |V(G)|, we find G or G has an induced subgraph H
on ¢ > m vertices with §(H) > (¢ — 1) + 2 — 1.

Let x = ¢ mod k (so z € {0,...,k—1}). We can now apply Lemma 3.3 to
Hwitha=k+z,b=0—k—x,t=2y{—1and o = 1/2. Suppose this gives
us a subset A C V(H) of size a such that §(H[A]) > 3a — 1+ /¢ — 1. Then
k < a < 2k and, by our choice of m, we have that v/ —1—-1/2>+y/m —1—
1/2 > 84/(k — 1) Ink+8, and so Corollary 3.2 yields a subset A" C A of size k
such that 6(H[A]) > 3(k—1)++/(k—1)Ink > 3(k—1)+ D'Vk —1/Ink, as
required. In case Lemma 3.3 does not produce such a set A, it gives instead
a subset B of sizeb=0¢—k—x =0 (mod k) (so b > m — 2k > 398kInk)
such that 6(H[B]) > +(b—1) —  + v/ — 1. We iteratively apply Lemma 3.3
to H[B] in a binary search to find a desired induced subgraph as follows.

Set Gy = H[B]. Let £y := |V(Go)| = b (so that 398kInk < ¢y < DkIn®k
and {5 = 0 (mod k)) and set tg == Vl—1—3 > Vl—1— 3 = Q1)
(so that 6(Go) > 1(fy — 1) + o). Suppose that G; is given, where G; has /;
vertices with ¢; = 0 (mod k) and 6(G;) > 5(¢; — 1) + t; for some number ¢;.
Set a; = |¢;/2k|k and b; = [(;/2k]k so that a; + b; = ¢; and a; = b; = 0
(mod k). Apply Lemma 3.3 with G = G;, a = a;, b=10;,t = t;, and a = %
Then we either obtain a set of vertices A; of size a; such that 6(G;[A;]) >
%ai -1+ %t,—, in which case we set G, 11 = G;[A;] = H[A;], or we obtain a set
of vertices B; of size b; such that §(G;[B;]) > %bi -1+ %ti, in which case we
set Giy1 = Gy[B;] = H[B;]. Now set £;1; = |V(Gi11)| and note that £;.; =0
(mod k) and 0(Giy1) > 5(Cis1 — 1) + tip1, where ¢4 = $(; — 1). Note also

In this way we obtain subgraphs Gy, Gy, ... of Gy = H[B] and we see from
the recursion for ¢; above that if ¢; > k then ¢;,1 < ¢;. Thus there exists some
J such that ¢; = k (since ¢; = 0 (mod k) for all i) and an easy computation
shows we can assume that j < log,({y/k) + 1. The recursion for ¢; implies



that ¢; > 427" — 1 so that

tok ]{5(\/60—1—%)_1> k \/E D/\/E

. > =
=920, = 200 4Vl T 4V/Dlnk Ink

(where we used that tg > /lp—1 — %, that ¢y large enough since k large
enough, and that ¢y < DkIn? k). Thus G; has k vertices and minimum degree
at least 1(k — 1) + D'vVk —1/Ink and is an induced subgraph of H[B] and

hence an induced subgraph of G or G. O
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