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Abstract

Erdős and Pach (1983) asked if there is some constant C > 0 such that for any
graph G on Ck ln k vertices either G or its complement G has an induced sub-
graph on k vertices with minimum degree at least 1

2(k − 1). They showed that the
above statement holds with Ck2 in place of Ck ln k but that it does not hold with
Ck ln k/ ln ln k. We show that it holds with Ck ln2 k, answering their question up
to a ln k factor.
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1 Introduction

Recall that the (diagonal, two-colour) Ramsey number is defined to be the
smallest integer R(k) for which any graph on R(k) vertices is guaranteed to
contain a homogeneous set of order k — that is, a set of k vertices corre-
sponding to either a complete or independent subgraph. The search for better
bounds on R(k), particularly asymptotic bounds as k → ∞, is a challeng-
ing topic that has long played a central role in combinatorial mathematics
(see [3,5]).

We are interested in a degree-based generalisation of R(k) where, rather
than seeking a clique or coclique of order k, we seek instead an induced sub-
graph of order (at least) k with high minimum degree (clique-like graphs) or
low maximum degree (coclique-like graphs). Erdős and Pach [1] introduced
this class of problems in 1983, and called them quasi-Ramsey problems. They
for instance showed that gradually relaxing the degree requirement reveals a
spectrum of Ramsey-type problems along which there is a sharp change in
asymptotics at a certain point. Naturally, this point of change corresponds to
a degree requirement of half the order of the subgraph sought.

The topic lay essentially dormant for decades, but we recently revisited
it together with Pach [4]. In particular, we refined our understanding of the
threshold for mainly what we referred to in [4] as the variable quasi-Ramsey

numbers (which corresponds to the parenthetical ‘at least’ above). For any
ν > 0 and positive integer k, we showed that any graph G or its complement
contains as an induced subgraph some graph on ℓ ≥ k vertices with minimum
degree at least 1

2
(ℓ − 1) + ν provided that G has at least kΩ(ν2) vertices, and

this is in a sense sharp [4, Theorem 3].

In the present work we instead focus on the harder version of this problem,
the determination of what we have called the fixed quasi-Ramsey numbers

(where ‘exactly’ takes place of the parenthetical ‘at least’ above). Using a
result on graph discrepancy, Erdős and Pach proved that there is a constant
C > 0 such that for any graph G on at least Ck2 vertices either G or its
complement G has an induced subgraph on k vertices with minimum degree
at least 1

2
(k − 1). With an unusual random graph construction, they also

showed that the previous statement does not hold with C ′k ln k/ ln ln k in
place of Ck2 for some constant C ′ > 0. They asked if it holds instead with
Ck ln k. Our main contribution here is to affirm this, up to a logarithmic
factor, by showing the following.

Theorem 1.1 There exists a constant C > 0 such that for k large enough

and any graph G on Ck ln2 k vertices, either G or its complement G has an



induced subgraph on k vertices with minimum degree at least 1
2
(k − 1).

Our proof of Theorem 1.1 has a number of different ingredients, including
the use of graph discrepancy, a probabilistic thinning result, and a greedy algo-
rithm that was inspired by similar procedures for max-cut and min-bisection.

To abide by page limits, we have had to omit one part of the proof. The
missing details are available at http://arxiv.org/abs/1411.4459.

2 An auxiliary result via discrepancy

Our first step in proving Theorem 1.1 will be to apply the following result.
This is a bound on a variable quasi-Ramsey number, which is similar to The-
orem 3(a) in [4]. The idea of the proof of this auxiliary result is inspired by
the sketch argument for Theorem 2 in [1], in spite of the error contained in
that sketch (cf. [4]).

Theorem 2.1 For any constant ν ≥ 0, there exists a constant C = C(ν) > 1
such that for any graph G on Ck ln k vertices, G or its complement G has an

induced subgraph on ℓ ≥ k vertices with minimum degree at least 1
2
(ℓ − 1) +

ν
√
ℓ− 1.

We use a result on graph discrepancy to prove Theorem 2.1. Given a graph
G = (V,E), the discrepancy of a set X ⊆ V is defined as

D(X) := e(X)− 1

2

(|X|
2

)

,

where e(X) denotes the number of edges in the subgraph G[X] induced by X.
We use the following result of Erdős and Spencer [2, Ch. 7].

Lemma 2.2 (Theorem 7.1 of [2]) Provided that n is large enough, then if

t ∈ {1, . . . , n}, any graph G = (V,E) of order n satisfies

max
S⊆V,|S|≤t

|D(S)| ≥ t3/2

103

√

ln(5n/t).

Proof of Theorem 2.1 (Sketch). Let G = (V,E) be any graph on at least
N = ⌈Ck ln k⌉ vertices for a sufficiently large choice of C. For any X ⊆ V
and ν > 0, we define the following skew form of discrepancy:

Dν(X) :=

∣

∣

∣

∣

e(X)− 1

2

(|X|
2

)
∣

∣

∣

∣

− ν|X|3/2.

http://arxiv.org/abs/1411.4459


We now construct a sequence (H0, H1, . . . , Ht) of graphs as follows. Let H0

be G or G. At step i+ 1, we form Hi+1 from Hi = (Vi, Ei) by letting Xi ⊆ Vi

attain the maximum skew discrepancy Dν and setting Vi+1 := Vi \ Xi and
Hi+1 := H [Vi+1]. We stop after step t+ 1 if |Vt+1| < 1

2
N . Let I+ ⊆ {1, . . . , t}

be the set of indices i for which D(Xi) > 0. By symmetry, we may assume

∑

i∈I+

|Xi| ≥
1

4
N. (1)

Claim 2.3 For any i ∈ I+ and x ∈ Xi, degHi
(x) ≥ 1

2
(|Xi|−1)+ν(|Xi|−1)1/2.

Proof. Write |Xi| = ni. We are trivially done if ni = 1, so assume ni ≥ 2.
Suppose x ∈ Xi has strictly smaller degree than claimed and setX ′

i := Xi\{x}.
Then, since i ∈ I+,

Dν(X
′
i) ≥ e(X ′

i)−
1

2

(

ni − 1

2

)

− ν(ni − 1)3/2

> e(Xi)−
1

2

(

ni

2

)

− ν
√
ni − 1− ν(ni − 1)3/2.

Note that n
3/2
i > n

1/2
i + (ni − 1)3/2, which by the above implies Dν(X

′
i) >

Dν(Xi), contradicting the maximality of Dν(Xi). ✷

Claim 2.3 implies that we may assume for each i ∈ I+ that |Xi| ≤ k − 1, or
else we are done. Writing I+ = {i1, . . . , im}, we can show the following.

Claim 2.4 For any ℓ ∈ {1, . . . , m− 3}, D(Xiℓ+3
) ≤ 5

6
D(Xiℓ).

This slightly technical claim is in fact the engine of this proof, and contains the
essential application of Lemma 2.2; however, to abide by space restrictions,
we have chosen to omit its justification.

Claim 2.4 implies that (5/6)(m−1)/3D(Xi1) ≥ D(Xim) ≥ 1 (assuming for
simplicity m ≡ 1 (mod 3)), which then implies

m− 1 ≤ 3 ln(D(Xi1))

ln(6/5)
≤ 6

ln(6/5)
ln(k − 1).

By (1), we deduce that at least one of the m sets Xi with i ∈ I+ satisfies

|Xi| ≥
N ln(6/5)

25 ln k
.



This last quantity is at least k by a choice of C sufficiently large, contradict-
ing our assumption that |Xi| ≤ k − 1 for each i ∈ I+. This completes the
argument. ✷

3 Proof of Theorem 1.1

The proof of the theorem entails running an algorithm, one of whose stopping
criteria is fulfilment of the hypothesis (for the right parameters) of the follow-
ing thinning result from [4]. When that happens, we can immediately apply
the result to obtain a k-subset of vertices of the desired type. We remark that
the following has a short, probabilistic proof.

Lemma 3.1 ([4]) For any 0 < c < 1 and ε > 0, let k be large enough that

exp(1
2
ε2(k− 1)) > k. If H is a graph of order ℓ ≥ k such that δ(H) ≥ cℓ, then

there exists S ⊆ V (H) of order k such that δ(H [S]) ≥ (c− ε)(k − 1).

By ‘right parameters’ above, we mean those in the following specific form
of Lemma 3.1.

Corollary 3.2 Let H be a graph of order ℓ ≥ k. If ℓ < 2k and δ(H) ≥
1
2
(ℓ−1)+8

√

(k − 1) ln k+8, then there exists S ⊆ V (H) of order k such that

δ(H [S]) ≥ 1
2
(k − 1) +

√

(k − 1) ln k.

As a subroutine, we make use of the following algorithm which is inspired
by the greedy algorithm for max-cut or min-bisection.

Lemma 3.3 Let G = (V,E) be a graph of order n with δ(G) ≥ 1
2
(n − 1) + t

for some number t. Let α ∈ [0, 1] and let a, b ∈ N such that a + b = n. Then

either there exists A ⊆ V of size a such that δ(G[A]) ≥ 1
2
a− 1 + αt, or there

exists B ⊆ V of size b such that δ(G[B]) ≥ 1
2
b− 1 + (1− α)t.

Proof. Take any A ⊆ V of size a and let B := V \ A. If there exists x ∈ A
with degA(x) < 1

2
a − 1 + αt and y ∈ B with degB(y) < 1

2
b − 1 + (1 − α)t,

then move x to B and y to A, i.e. swap x and y. Note that when there is no
such pair of vertices x, y we are done. We just need to prove that, if we keep
iterating, then this procedure must stop at some point.

Consider the number of edges in G[A] before and after we swap x and y.
The number of edges in G[A] increases by at least

degA(y)− degA(x)− 1 ≥ δ(G)− degB(y)− degA(x)− 1 ≥ 1/2,

(where we subtracted 1 in case x and y are adjacent). This shows that we
cannot continue to swap pairs indefinitely. ✷



At last we are ready to prove the main result. In fact, we prove something
stronger.

Theorem 3.4 There exist constants D,D′ > 0 such that for k large enough

and any graph G on Dk ln2 k vertices, G or its complement G has an induced

subgraph on k vertices with minimum degree at least 1
2
(k−1)+D′

√
k − 1/ ln k.

Proof. Set m := 400k ln k, D := 800C, where C = C(2) is defined according
to Theorem 2.1, and D′ := 1/(4

√
D). By Theorem 2.1, since Cm lnm ≤

800Ck ln2 k ≤ Dk ln2 k ≤ |V (G)|, we find G or G has an induced subgraph H
on ℓ ≥ m vertices with δ(H) ≥ 1

2
(ℓ− 1) + 2

√
ℓ− 1.

Let x = ℓ mod k (so x ∈ {0, . . . , k− 1}). We can now apply Lemma 3.3 to
H with a = k+x, b = ℓ−k−x, t = 2

√
ℓ− 1 and α = 1/2. Suppose this gives

us a subset A ⊆ V (H) of size a such that δ(H [A]) ≥ 1
2
a − 1 +

√
ℓ− 1. Then

k ≤ a < 2k and, by our choice of m, we have that
√
ℓ− 1− 1/2 ≥

√
m− 1−

1/2 ≥ 8
√

(k − 1) ln k+8, and so Corollary 3.2 yields a subset A′ ⊆ A of size k

such that δ(H [A′]) ≥ 1
2
(k−1)+

√

(k − 1) ln k ≥ 1
2
(k−1)+D′

√
k − 1/ ln k, as

required. In case Lemma 3.3 does not produce such a set A, it gives instead
a subset B of size b = ℓ − k − x ≡ 0 (mod k) (so b ≥ m − 2k ≥ 398k ln k)
such that δ(H [B]) ≥ 1

2
(b− 1)− 1

2
+
√
ℓ− 1. We iteratively apply Lemma 3.3

to H [B] in a binary search to find a desired induced subgraph as follows.

Set G0 = H [B]. Let ℓ0 := |V (G0)| = b (so that 398k ln k ≤ ℓ0 ≤ Dk ln2 k
and ℓ0 ≡ 0 (mod k)) and set t0 :=

√
ℓ− 1 − 1

2
≥

√
ℓ0 − 1 − 1

2
= Ω(

√
ℓ0)

(so that δ(G0) ≥ 1
2
(ℓ0 − 1) + t0). Suppose that Gi is given, where Gi has ℓi

vertices with ℓi ≡ 0 (mod k) and δ(Gi) ≥ 1
2
(ℓi − 1) + ti for some number ti.

Set ai = ⌊ℓi/2k⌋k and bi = ⌈ℓi/2k⌉k so that ai + bi = ℓi and ai ≡ bi ≡ 0
(mod k). Apply Lemma 3.3 with G = Gi, a = ai, b = bi, t = ti, and α = 1

2
.

Then we either obtain a set of vertices Ai of size ai such that δ(Gi[Ai]) ≥
1
2
ai − 1 + 1

2
ti, in which case we set Gi+1 = Gi[Ai] = H [Ai], or we obtain a set

of vertices Bi of size bi such that δ(Gi[Bi]) ≥ 1
2
bi − 1 + 1

2
ti, in which case we

set Gi+1 = Gi[Bi] = H [Bi]. Now set ℓi+1 = |V (Gi+1)| and note that ℓi+1 ≡ 0
(mod k) and δ(Gi+1) ≥ 1

2
(ℓi+1 − 1) + ti+1, where ti+1 = 1

2
(ti − 1). Note also

that ℓi+1/k ≤ ⌈ℓi/2k⌉.
In this way we obtain subgraphs G0, G1, . . . of G0 = H [B] and we see from

the recursion for ℓi above that if ℓi > k then ℓi+1 < ℓi. Thus there exists some
j such that ℓj = k (since ℓi ≡ 0 (mod k) for all i) and an easy computation
shows we can assume that j ≤ log2(ℓ0/k) + 1. The recursion for ti implies



that ti ≥ t02
−i − 1 so that

tj ≥
t0k

2ℓ0
− 1 ≥ k(

√
ℓ0 − 1− 1

2
)

2ℓ0
− 1 ≥ k

4
√
ℓ0

≥
√
k

4
√
D ln k

= D′

√
k

ln k

(where we used that t0 ≥
√
ℓ0 − 1 − 1

2
, that ℓ0 large enough since k large

enough, and that ℓ0 ≤ Dk ln2 k). Thus Gj has k vertices and minimum degree
at least 1

2
(k − 1) + D′

√
k − 1/ ln k and is an induced subgraph of H [B] and

hence an induced subgraph of G or G. ✷
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