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Abstract

For a graph G, we denote by σ2(G) the minimum degree sum of two non-adjacent
vertices if G is non-complete; otherwise, σ2(G) = +∞. In this paper, we give the
following two results; (i) If s1 and s2 are integers with s1, s2 ≥ 2 and if G is a
non-complete graph with σ2(G) ≥ 2(s1 + s2 + 1) − 1, then G contains two vertex-
disjoint subgraphs H1 and H2 such that each Hi is a graph of order at least si + 1
with σ2(Hi) ≥ 2si − 1. (ii) If s1 and s2 are integers with s1, s2 ≥ 2 and if G is a
non-complete triangle-free graph with σ2(G) ≥ 2(s1 + s2)− 1, then G contains two
vertex-disjoint subgraphs H1 and H2 such that each Hi is a graph of order at least
2si with σ2(Hi) ≥ 2si−1. By using this kind of results, we also give some corollaries
concerning the degree conditions for the existence of vertex-disjoint cycles.
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1 Introduction

In this paper, we consider finite simple graphs, which have neither loops nor
multiple edges. Let G be a graph. We denote by V (G), E(G) and δ(G) be
the vertex set, the edge set and the minimum degree of G, respectively. We
denote by dG(v) the degree of a vertex v in G. The invariant σ2(G) is defined
to be the minimum degree sum of two non-adjacent vertices of G, i.e.,

σ2(G) = min
{
dG(u) + dG(v) : u, v ∈ V (G), u �= v, uv /∈ E(G)

}

if G is non-complete; otherwise, let σ2(G) = +∞. A pair (H1, H2) is called
a partition of G if H1 and H2 are two vertex-disjoint subgraphs of G and
V (G) = V (H1) ∪ V (H2).

Stiebitz [12] considered the decomposition of graphs under degree con-
straints and proved the following result.

Theorem 1.1 (Stiebitz [12]) Let s1 and s2 be positive integers, and let G
be a graph. If δ(G) ≥ s1 + s2 + 1, then there exists a partition (H1, H2) of G
such that δ(Hi) ≥ si for i ∈ {1, 2}.

Kaneko [9] showed that this result holds for triangle-free graphs with min-
imum degree at least s1 + s2 as follows. (Diwan improved further Theorem
1.1 for graphs with girth at least 5, see [4].)

Theorem 1.2 (Kaneko [9]) Let s1 and s2 be positive integers, and let G be
a triangle-free graph. If δ(G) ≥ s1 + s2, then there exists a partition (H1, H2)
of G such that δ(Hi) ≥ si for i ∈ {1, 2}.

The purpose of this paper is to consider σ2-versions of Theorems 1.1 and
1.2. More precisely, we consider the following problems.

Problem 1.3 Let s1 and s2 be integers with s1 ≥ 2 and s2 ≥ 2, and let G
be a non-complete graph. If σ2(G) ≥ 2(s1 + s2 + 1) − 1, then there exists a
partition (H1, H2) of G such that |V (Hi)| ≥ si + 1 and σ2(Hi) ≥ 2si − 1 for
i ∈ {1, 2}.
Problem 1.4 Let s1 and s2 be integers with s1 ≥ 2 and s2 ≥ 2, and let G
be a non-complete triangle-free graph. If σ2(G) ≥ 2(s1 + s2) − 1, then there
exists a partition (H1, H2) of G such that |V (Hi)| ≥ 2si and σ2(Hi) ≥ 2si − 1
for i ∈ {1, 2}.

In Problem 1.3 (resp., Problem 1.4), if we drop the condition “|V (Hi)| ≥
si + 1 (resp., |V (Hi)| ≥ 2si)” in the conclusion, then it is an easy problem.
Because, for each edge xy in a graph G satisfying the assumption of Problem



1.3 (resp., the assumption of Problem 1.4), H1 = G[{x, y}] andH2 = G−{x, y}
satisfy σ2(H1) =∞ > 2s1−1 and σ2(H2) ≥ σ2(G)−2|{x, y}| ≥ 2s2−1. Here,
for a vertex subset X of a graph G, G[X] denotes the subgraph of G induced
by X, and let G−X = G[V (G) \X]. (Similarly, for the case where si = 1 for
some i, it is easily solved.)

In addition, ifG2 is a complete bipartite graphKs1+s2−1,s1+s2 , then σ2(G2) =
2(s1 + s2) − 2 and G2 does not contain a partition (H1, H2) as in Prob-
lem 1.4. Thus, G2 shows that the condition “σ2(G) ≥ 2(s1 + s2) − 1” in
Problem 1.4 is best possible if it’s true. Moreover, if G1 is a balanced com-
plete multipartite graph with l + 1 ( ≥ 4) partite sets of size s ( ≥ 2), then
σ2(G1) = 2ls = 2((ls−l+1)+(l−1)+1)−2, and it’s easy to check that G1 does
not contain a partition (H1, H2) as in Problem 1.3 for (s1, s2) = (ls−l+1, l−1).
Thus the condition “σ2(G) ≥ 2(s1 + s2 + 1) − 1” in Problem 1.3 is also best
possible in a sense if it’s true.

Before giving the main result of this paper, we introduce the outline of the
proof of Theorems 1.1 and 1.2. The proof of them consists of the following
two steps;

Step 1: To show the existence of two vertex-disjoint subgraphs of high mini-
mum degree, i.e., we show the existence of two vertex-disjoint subgraphs H1

and H2 such that δ(Hi) ≥ si for i ∈ {1, 2}.
Step 2: To show the existence of two vertex-disjoint subgraphs of high mini-
mum degree that partition V (G) by using Step 1.

In particular, in the proofs of Theorems 1.1 and 1.2, Step 2 is easily solved,
that is, most of the proof is Step 1. In fact, if a graph G with δ(G) ≥ s1+s2−1
contains two vertex-disjoint subgraphs H1 and H2 such that δ(Hi) ≥ si for
i ∈ {1, 2}, then we can easily extend the pair (H1, H2) to a partition of G
keeping its minimum degree condition (see [12, Proposition 4]).

Considering the situation of the proofs of Theorems 1.1 and 1.2, one may
approach to Problems 1.3 and 1.4 by the same step as above. However, for
the case of σ2-versions, Step 2 as well as Step 1 are not also an easy problem.
Because we allow for graphs that there exist vertices with low degree if we
consider σ2-versions. In fact, in the proof of Step 2 for Theorem 1.1 ([12,
Proposition 4]), the assumption that every vertex has high degree plays a
crucial role. Although we do not know whether we can extend vertex-disjoint
subgraphs of high minimum “degree sum” to a partition or not at the moment,
we can solve Step 1 for Problems 1.3 and 1.4. The following are our main
results.



Theorem 1.5 Let s1 and s2 be integers with s1 ≥ 2 and s2 ≥ 2, and let G
be a non-complete graph. If σ2(G) ≥ 2(s1 + s2 + 1) − 1, then there exist two
vertex-disjoint induced subgraphs H1 and H2 of G such that |V (Hi)| ≥ si + 1
and σ2(Hi) ≥ 2si − 1 for i ∈ {1, 2}.
Theorem 1.6 Let s1 and s2 be integers with s1 ≥ 2 and s2 ≥ 2, and let G be
a non-complete triangle-free graph. If σ2(G) ≥ 2(s1 + s2)− 1, then there exist
two vertex-disjoint induced subgraphs H1 and H2 of G such that |V (Hi)| ≥ 2si
and σ2(Hi) ≥ 2si − 1 for i ∈ {1, 2}.

Note that the above graphs G1 and G2 also show that σ2 conditions in
Theorems 1.5 and 1.6 are best possible, respectively.

In order to show Theorems 1.5 and 1.6, we actually consider a stronger
statement as follows. Here for a graph G, we let ε(G) = 1 if G contains a
triangle; otherwise, let ε(G) = 0. For a graph G and an integer s, we define
V≤s(G) = {v ∈ V (G) : dG(v) ≤ s}.
Theorem 1.7 Let s1 and s2 be integers with s1 ≥ 2 and s2 ≥ 2, and G be a
non-complete graph with ε(G) = ε, and let s∗ = s1+s2+ε. If σ2(G) ≥ 2s∗−1,
then there exist two vertex-disjoint induced subgraphs H1 and H2 of G such
that for each i with i ∈ {1, 2}, the following hold.

(i) |V (Hi)| ≥ 2si − ε(si − 1).

(ii) dHi
(u) ≥ si for u ∈ V (Hi) \ V≤s∗−1(G).

(iii) dHi
(u) + dHi

(v) ≥ 2si − 1 for u ∈ V (Hi) \ V≤s∗−1(G) and v ∈ V (Hi) ∩
V≤s∗−1(G) with uv /∈ E(Hi).

Note that if G is a graph with ε(G) = ε and σ2(G) ≥ 2(s1+s2+ε)−1, then
G[V≤(s1+s2+ε)−1(G)] forms a complete graph, and hence for any two distinct
non-adjacent vertices in such a graphG, at least one of the two vertices belongs
to V (G)\V≤(s1+s2+ε)−1(G), i.e, (ii) and (iii) of Theorem 1.7 imply that σ2(Hi) ≥
2si − 1. Thus Theorems 1.5 and 1.6 immediately follow from Theorem 1.7.
Moreover, since V≤(s1+s2+ε)−1(G) = ∅ if and only if δ(G) ≥ s1 + s2 + ε for a
graph G with ε(G) = ε, Theorem 1.7 also implies Theorems 1.1 and 1.2.

In the proof of Theorem 1.7, we generalize Stiebitz’s elegant argument [12]
to σ2-versions. However, the proof is rather complicated. One of the reasons is
that we have to check two degree conditions ((ii) and (iii) of Theorem 1.7) to
obtain the graphs H1 and H2 as in Theorem 1.7. One other reason is that the
lower bound of the minimum degree sum of two non-adjacent vertices is not
closed with respect to adding a vertex with high degree. For example, if H is
a subgraph of a graph G with δ(H) ≥ s and v is a vertex in G−H such that
v has at least s neighbors in H, then G[V (H)∪{v}] also has minimum degree



at least s. However, it is not always true that if σ2(H) ≥ 2s and v is a vertex
in G−H such that v has at least s neighbors in H, then σ2(G[V (H) ∪ {v}])
is also at least 2s. Because of this, the proof of Theorem 1.7 is more difficult
than Theorems 1.1 and 1.2. For more details, we refer the reader to our full
version [2].

This kind of results are sometimes useful tools to get degree conditions
for packing of graphs, i.e., the existence of k vertex-disjoint subgraphs which
belong to some fixed class of graphs. In the next section, we will explain it by
taking vertex-disjoint cycles for example, and give some corollaries about it.

In the rest of this section, we mention similar concepts. In 1966, Lovász [11]
proved a dual type of Theorem 1.1 with respect to maximum degree; Every
graph with maximum degree at most s1 + s2 + 1 has a partition (H1, H2)
such that the maximum degree of each Hi is at most si. On the other hand,
Thomassen [13,14] conjectured the connectivity version of Theorem 1.1; Every
(s1 + s2 + 1)-connected graph has a partition (H1, H2) such that each Hi is
si-connected. However, this conjecture is still wide open, and hence there is
a huge gap between “minimum degree” and “connectivity”. Other similar
concepts can be found in [3,5,8,10,15]. Therefore, this type problem has been
extensively studied in Graph Theory.

2 Applications to degree conditions for vertex-disjoint
cycles

In this section, we give some corollaries for packing problems by using the
results in Section 1. In particular, we will give a sharp σ2 condition for the
existence of k vertex-disjoint cycles of lengths 0-mod 3 by using Theorem 1.6
(see Problem 2.2, Proposition 2.3(ii) and Theorem 2.4).

In [1], Chen and Saito gave a minimum degree condition for the existence
of a cycle of length 0-mod 3 as follows; Every graph G with δ(G) ≥ 3 contains
a cycle of length 0-mod 3. Here, a cycle C is called a cycle of length 0-mod
3 if |V (C)| ≡ 0 (mod 3). As a natural generalization of this theorem, one
may consider the following problem.

Problem 2.1 Every graph G with δ(G) ≥ 3k ( ≥ 3) contains k vertex-disjoint
cycles of lengths 0-mod 3.

The complete bipartite graphK3k−1,n−3k+1 shows that the minimum degree
condition in Problem 2.1 is best possible if it’s true, because every cycle of



length 0-mod 3 in the graph has order at least 6. Considering this extremal
graph, we can also consider a more general problem as follows.

Problem 2.2 Every graph G of order at least 3k ( ≥ 3) with σ2(G) ≥ 6k− 1
contains k vertex-disjoint cycles of lengths 0-mod 3.

Since σ2(K3k−1,n−3k+1) = 6k−2, the complete bipartite graph K3k−1,n−3k+1

also shows that “σ2(G) ≥ 6k − 1” cannot be replaced by “σ2(G) ≥ 6k − 2”
in Problem 2.2. Moreover, since σ2(G) ≥ 2δ(G) for a graph G, it follows that
Problem 2.2 is stronger than Problem 2.1.

In order to attack the above problems, one may use the induction on k. In
particular, for Problem 2.1, we already know that Problem 2.1 is true when
k = 1 by a theorem of Chen and Saito [1], that is, Problem 2.1 can be solved by
showing the inductive step. In the argument of the inductive step, Theorems
1.1, 1.2, 1.5 and 1.6 sometimes can work effectively. In fact, we can easily
obtain the following by using Theorems 1.2 and 1.6, respectively.

Proposition 2.3 (i) If Problem 2.1 is true for k = 1, then Problem 2.1 is
also true for any k ≥ 1.

(ii) If Problem 2.2 is true for k = 1, then Problem 2.2 is also true for any
k ≥ 1.

We only show Proposition 2.3(ii) because we can obtain (i) by the same
argument.

Proof. We show that Problem 2.2 is true for any k ≥ 1 by induction on k. By
the assumption of (ii), Problem 2.2 is true when k = 1. Thus we may assume
that k ≥ 2. LetG be a graph of order at least 3k with σ2(G) ≥ 6k−1. We show
that G contains k vertex-disjoint cycles of lengths 0-mod 3. If G is complete,
then the assertion clearly holds. Thus we may assume that G is non-complete.
Suppose first that G contains a triangle C. Then every vertex of G not in C
has at most 3 neighbors in C, and hence σ2(G−C) ≥ (6k−1)−6 = 6(k−1)−1.
Note that |V (G− C)| ≥ 3(k − 1). Since Problem 2.2 is true for k − 1 by the
induction hypothesis, G − C contains k − 1 vertex-disjoint cycles of lengths
0-mod 3. With the cycle C, we get then k vertex-disjoint cycles of lengths
0-mod 3 in G.

Suppose next that G is triangle-free. Then, since σ2(G) ≥ 6k − 1 =
2(3(k − 1) + 3) − 1, it follows from Theorem 1.6 that there exist two vertex-
disjoint subgraphs H1 and H2 of G such that |V (H1)| ≥ 2 ·3(k−1) > 3(k−1),
σ2(H1) ≥ 2 · 3(k − 1) − 1 = 6(k − 1) − 1, |V (H2)| ≥ 2 · 3 > 3 and σ2(H2) ≥
2 · 3 − 1 = 5. Hence by the induction hypothesis, H1 contains k − 1 vertex-



disjoint cycles of lengths 0-mod 3, and H2 contains a cycle of length 0-mod 3.
We get then k vertex-disjoint cycles of lengths 0-mod 3 in G. �

By a theorem of Chen and Saito [1] and Proposition 2.3(i), we see that
Problem 2.1 is solved in affirmative. Similarly, by Proposition 2.3(ii), it is
only necessary to consider the case of k = 1 for Problem 2.2. In fact, we can
completely solve Problem 2.2 by showing the following, which is also our main
result (see also [2]).

Theorem 2.4 Every graph G of order at least 3 with σ2(G) ≥ 5 contains a
cycle of length 0-mod 3.

Note that by the similar argument of the proof of Proposition 2.3, we can
also obtain other results. For example, in [6], Gould, Horn and Magnant
proposed the following conjecture, which is a generalization of Hajnal and
Szemerédi’s theorem [7]; Every graph G of order at least (c+1)k with δ(G) ≥
ck contains k vertex-disjoint cycles in which each cycle has at least (c+1)(c−2)

2

chords. They showed that the conjecture is true when c, k and the order of a
graph G are sufficiently large (see [6] for more details). Moreover, they also
proved that the conjecture is true when k = 1, and hence by combining this
result with Theorem 1.1, we can easily obtain a slightly weaker version of the
conjecture (see [2] for more details).

Corollary 2.5 Let c, k be integers with c ≥ 2 and k ≥ 1. Every graph G with
δ(G) ≥ (c + 1)k − 1 contains k vertex-disjoint cycles in which each cycle has

at least (c+1)(c−2)
2

chords.
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