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Abstract

Aharoni and Berger conjectured that every bipartite graph which is the union of
n matchings of size n + 1 contains a rainbow matching of size n. This conjecture
is a generalization of several old conjectures of Ryser, Brualdi, and Stein about
transversals in Latin squares. When the matchings are all edge-disjoint and perfect,
an approximate version of this conjecture follows from a theorem of Häggkvist
and Johansson which implies the conjecture when the matchings have size at least
n+ o(n).

Here we’ll discuss a proof of this conjecture in the case when the matchings
have size n + o(n) and are all edge-disjoint (but not necessarily perfect). The
proof involves studying connectedness in coloured, directed graphs. The notion of
connectedness that we introduce is new, and perhaps of independent interest.
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1 Introduction

A Latin square of order n is an n × n array filled with n different symbols,
where no symbol appears in the same row or column more than once. Latin
squares arise in many branches of mathematics such as algebra (where Latin
squares are exactly the multiplication tables of quasigroups), experimental
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design (where some row-column designs come from Latin squares), and cod-
ing theory (where some error-correcting codes are constructed from mutually
orthogonal Latin squares). They also occur in recreational mathematics—for
example completed Sudoku puzzles are Latin squares.

In this paper we will look for transversals in Latin squares—a transversal
in a Latin square of order n is a set of n entries such that no two entries are in
the same row, same column, or have the same symbol. One reason transversals
in Latin squares are interesting is that a Latin square has an orthogonal mate
if, and only if, it has a decomposition into disjoint transversals. It is easy
to see that not every Latin square has a transversal (for example the unique
2 × 2 Latin square has no transversal), however perhaps every Latin square
contains a large partial transversal (a partial transversal of size m is a set of
m entries such that no two entries are in the same row, same column, or have
the same symbol)?

There are some old and difficult conjectures which guarantee large partial
transversals in Latin squares. One is a conjecture of Ryser that every Latin
square of odd order contains a transversal. Brualdi and Stein independently
made the following conjecture.

Conjecture 1.1 (Brualdi and Stein) Every Latin square contains a par-
tial transversal of size n− 1.

There have been many partial results about this conjecture. It is known
that every Latin square has a partial transversal of size n− o(n)—Woolbright
and independently Brower, de Vries, and Wieringa proved that ever Latin
square contains a partial transversal of size n−√

n. This has been improved
by Hatami and Schor to n − C log2 n. A remarkable result of Häggkvist and
Johansson shows that if we consider (1− ε)n×n Latin rectangles rather than
Latin squares, then it is possible to decompose all the entries into disjoint
transversals (for m ≤ n a m × n Latin rectangle is an m × n array of n
symbols where no symbol appears in the same row or column more than once.
A transversal in a Latin rectangle is a set of m entries no two of which are in
the same row, column, or have the same symbol).

Theorem 1.2 (Häggkvist and Johansson, [4]) For every ε, there is an
m0 = m0(ε) such that the following holds. For every n ≥ (1 + ε)m ≥ m0,
every m× n Latin rectangle can be decomposed into disjoint transversals.

This theorem is proved by a probabilistic argument, using a “random
greedy process” to construct the transversals. The above theorem gives yet
another proof that every sufficiently large n × n Latin square has a partial



transversal of size n− o(n)—indeed if we remove εn rows of a Latin square we
obtain a Latin rectangle to which Theorem 1.2 can be applied.

In this paper we will look at a strengthening of Conjecture 1.1. The
strengthening we’ll look at is a conjecture due to Aharoni and Berger which
takes place in a more general setting than Latin squares—namely coloured
bipartite graphs. To see how the two settings are related, notice that there
is a one-to-one correspondence between n× n Latin squares and proper edge-
colourings of Kn,n with n colours—indeed to a Latin square S we associate
the colouring of Kn,n with vertex set {x1, . . . , xn, y1, . . . , yn} where for every
i, j the edge between xi and yj receives colour Si,j. It is easy to see that in
this setting transversals in S correspond to perfect rainbow matchings in Kn,n

(a matching is rainbow if all its edges have different colours). Thus Conjec-
ture 1.1 is equivalent to the statement that “in any proper n-edge-colouring
of Kn,n, there is a rainbow matching of size n− 1”.

One could ask whether a large rainbow matching exists in more general
bipartite graphs. Aharoni and Berger posed the following conjecture, which
generalises Conjecture 1.1.

Conjecture 1.3 (Aharoni and Berger, [1]) Let G be a bipartite graph con-
sisting of n matchings, each with at least n + 1 edges. Then G contains a
rainbow matching with n edges.

In the above conjecture we think of the n matchings forming G as having
different colours, and so “rainbow matching” means a matching containing one
edge from each matching in G. It is worth noting that the above conjecture
does not require the matchings in G to be disjoint i.e. it is about bipartite
multigraphs rather than simple graphs. This above conjecture was posed in a
different form in [1] as a conjecture about matchings in tripartite hypergraphs
(Conjecture 2.4 in [1]). It was first stated as a conjecture about rainbow
matchings in [2].

The above conjecture has attracted a lot of attention recently, and there
are many partial results. One very natural approach to Conjecture 1.3 is
to prove it when the matchings have size much larger than n + 1. When
the matchings have size 2n then it is easy to see that the conclusion of the
conjecture is true (by greedily choosing disjoint edges one at a time). Aharoni,
Charbit, and Howard [2] proved that matchings of size 7n/4 are sufficient to
guarantee a rainbow matching of size n. Kotlar and Ziv [5] improved this
to 5n/3. Clemens and Ehrenmüller [3] further improved this to 3n/2 + o(n)
which is currently the best known bound.

An approximate version of Conjecture 1.3 can be obtained from Theo-



rem 1.2. It is easy to see that Theorem 1.2 is equivalent to the following “let
G be a bipartite graph consisting of n edge-disjoint perfect matchings, each
with at least n+o(n) edges. Then G can be decomposed into disjoint rainbow
matchings of size n” (to see that this is equivalent to Theorem 1.2, associate an
m-edge-coloured bipartite graph with vertex set {x1, . . . , xn, y1, . . . , yn} with
any m × n Latin rectangle by placing a colour k edge between xi and yj
whenever (k, i) has symbol j in the rectangle).

The result that we’ll discuss is an approximate version of Conjecture 1.3
in the case when the matchings in G are disjoint, but not necessarily perfect.

Theorem 1.4 For all ε0 > 0, there exists an N0 = N0(ε0) such that the
following holds. Let G be a bipartite graph consisting on n ≥ N0 edge-disjoint
matchings, each with at least (1 + ε0)n edges. Then G contains a rainbow
matching with n edges.

Unlike the proof of Theorem 1.2 which can be used to give a randomised
process to find a rainbow matching, the proof of Theorem 1.4 is algorithmic
i.e. the matching in Theorem 1.4 can be found in polynomial time.

The proof of Theorem 1.4 will appear in [6]. For the remainder of this
extended abstract we will sketch some of the ideas which go into the proof. At
a very high level the proof of Theorem 1.4 consists of associating an auxiliary
directed graph D to the graph G, such that directed paths in D give some kind
of information about rainbow matchings in G. Then we apply results about
connectedness in directed graphs in order to prove the theorem. In Section 1.1
we sketch how the directed graph D is constructed. In Section 1.2 we state
the result about directed which is used in the proof of Theorem 1.4.

1.1 From bipartite graphs to directed graphs

Let G be a graph consisting of n disjoint matchings each of size (1 + ε0)n
as in the statement of Theorem 1.4. Let X and Y be the two parts of the
bipartition of G. Let M be a rainbow matching in G. Let X0 = X \V (M) be
the subset of X consisting of vertices not touched by M . Let c∗ be a colour
missing from M .

We construct an edge-labelled directed graph D as follows. The vertex set
of D will be the set of colours in G. Every edge of D is labelled by a vertex
x ∈ X0. For two colours u, v ∈ V (D) we set uv to be an edge of D labelled
by x ∈ X0 whenever there is a colour u edge from x to the colour v edge of
M in G.

Why might this graph be useful? It turns out that if there is a vertex of



small out-degree in D which is close to c∗ then we can find a larger rainbow
matching in G.

Lemma 1.5 Let P = (c∗, p1, p2, . . . , pk) be a directed rainbow path from c∗

to some pk ∈ V (D). If we have d+(v) < ε0n − |P |, then there is a rainbow
matching of size |M |+ 1 in G.

Proof. Let e1, e2, . . . , ek be the edges of G corresponding to the edges c∗p1,
p1p2, . . . , pk−1pk of D. For i = 1, . . . , k, let mi be the colour pi edge of M .
From the definition of D, we have that ei and mi intersect in Y , and that ei+1

and mi have the same colour. Notice that for distinct i and j, the edges ei
and ej are disjoint (since P is rainbow) as are mi and mj (since P is a path).
Therefore M ′ = M −m1 − . . .−mk + e1 + . . . + ek is a rainbow matching of
size |M | in G, missing colour pk.

Notice that since there are (1 + ε0)n colour pk edges in G, there must be
at least ε0n colour pk edges touching X0. Each of these gives rise to an edge
leaving pk unless it goes through Y0. Therefore if d

+(v) < ε0n−|P |, then there
are at least |P |+ 1 colour pk edges between X0 and Y0. One of these must be
disjoint from e1, . . . , ek and so can be added to M ′ to give a matching of size
|M |+ 1. �

Therefore rainbow paths in D can give useful information about rainbow
matchings in G. In the full proof of Theorem 1.4 we use more complicated
directed graphs than the one constructed above. We also use a result about
coloured directed graphs which we discuss in the next section.

1.2 Rainbow connectedness

The key idea in the proof of Theorem 1.4 seems to be a new notion of con-
nectedness of coloured graphs.

Definition 1.6 An edge-coloured graph G is said to be strongly rainbow k-
connected if for any set of at most k colours S and any pair of vertices u and
v, there is a rainbow u to v path whose edges have no colours from S.

The above definition differs from usual notions of connectedness, since
generally the avoided set S is a set of edges rather than colours. In some ways
Definition 1.6 is perhaps too strong. In particular, there doesn’t seem to be a
natural analogue of Menger’s Theorem for strongly rainbow k-edge-connected
graphs. Nevertheless, strongly rainbow k-connected graphs turn out to be
very useful for studying rainbow matchings in bipartite graphs. The following
lemma is a key part of the proof of Theorem 1.4. It shows that every properly



coloured directed graph D with big out-degree has a large, highly connected
subset.

Lemma 1.7 For all ε > 0 and k ∈ N, there is an N = N(ε, k) such that the
following holds.

Let D be a properly edge-coloured directed graph on at least N vertices.
Then there is a strongly rainbow k-connected subset A ⊆ V (D) satisfying

|A| ≥ δ+(D)− ε|D|.

Here “strongly rainbow k-connected subset” means a set of vertices A ⊆
V (D) such that for any set of at most k colours S and any pair of vertices
u and v, there is a rainbow u to v path in D whose edges have no colours
from S. This is different from just saying that D[A] is strongly rainbow k-
connected because the paths connecting u and v are allowed to leave A. The
above lemma is proved in [6].
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