
The Multicolour Ramsey Number of a Long
Odd Cycle

Matthew Jenssen

Department of Mathematics
London School of Economics
London, WC2 2AE, UK

Abstract

For a graph G, the k-colour Ramsey number Rk(G) is the least integer N such that
every k-colouring of the edges of the complete graph KN contains a monochromatic
copy of G. Bondy and Erdős conjectured that for an odd cycle Cn on n > 3 vertices,

Rk(Cn) = 2k−1(n− 1) + 1.

This is known to hold when k = 2 and n > 3, and when k = 3 and n is large. We
show that this conjecture holds asymptotically for k ≥ 4, proving that for n odd,

Rk(Cn) = 2k−1n+ o(n) as n→∞.

The proof uses the regularity lemma to relate this problem in Ramsey theory to one
in convex optimisation, allowing analytic methods to be exploited. Our analysis
leads us to a new class of lower bound constructions for this problem, which naturally
arise from perfect matchings in the k-dimensional hypercube. Progress towards a
resolution of the conjecture for large n is also discussed.
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1 Introduction and Results

For a graph G, the k-colour Ramsey number Rk(G) is the least integer N
such that every k-colouring of the edges of the complete graph KN contains
a monochromatic copy of G. We let Cn denote the cycle of length n. The
Ramsey numbers of cycles has been the subject of much study, in particular the
value of R2(Cn) has been determined for all n through the work of Bondy and
Erdős [1], Faudree and Schelp [4], and Rosta [8]. For more than two colours
the problem is far less understood. The following conjecture is attributed to
Bondy and Erdős [1].

Conjecture 1 If k ≥ 3 and n > 3 is odd, then

Rk(Cn) = 2k−1(n− 1) + 1.

We note that the value of Rk(Cn) when n is even exhibits different behaviour
where the conjectured value is (k − 1)n+O(1) as n→∞.

For k ≥ 3 and odd n > 3, Erdős and Graham [3] proved the bounds
2k−1(n−1)+1 ≤ Rk(Cn) ≤ (k+2)!n. The lower bound motivates Conjecture 1,
which the authors establish with a simple inductive construction: If there exists
a k-colouring of the edges of the complete graph Km with no monochromatic
Cn, then by joining two such copies of Km by edges of colour k+1, one obtains
a (k + 1)-colouring of K2m with no monochromatic Cn. The base construction,
for k = 1, is simply a monochromatic clique of size n− 1.

The first breakthrough towards Conjecture 1 was made by �Luczak [6] who
used the regularity method to show that the k = 3 case holds asymptotically,
i.e. that for n odd,

R3(Cn) = 4n+ o(n) as n→∞.

More recently, Kohayakawa, Simonovits and Skokan [5] paired �Luczak’s ap-
proach with stability arguments to resolve the k = 3 case of Conjecture 1
for large n. The case where k ≥ 4 remains open. Progress was made by
�Luczak, Simonovits and Skokan [7] who showed that for k ≥ 4 and odd n,
Rk(Cn) ≤ k2kn + o(n) as n → ∞. In this paper we show that Conjecture 1
holds asymptotically for all k.

Theorem 1 For k ≥ 4 and odd n,

Rk(Cn) = 2k−1n+ o(n) as n→∞.



The proof of Theorem 1, which we sketch in the following section, leads us
to a new class of extremal colourings for Conjecture 1 which arise naturally
from perfect matchings of the k-dimensional hypercube Qk. We will formulate
a conjecture, Conjecture 2, which asserts that these colourings are essentially
the only extremal colourings for Conjecture 1. We discuss progress towards
this conjecture and towards a resolution of Conjecture 1 for large n.

2 Proof Methods and Hypercube Colourings

For the proof of Theorem 1, let n be odd, ε > 0 and set N = 2k−1n + εn.
Suppose that there exists a k-colouring of the edges of G = KN , avoiding a
monochromatic copy of Cn. Let G1, . . . , Gk be its colour classes. We apply
the k-colour version of the regularity lemma [9], with a suitable choice of
parameters, to obtain a regular partition of the vertex set V (G) into t + 1
classes V (G) = V0 ∪ . . . ∪ Vt. We construct a reduced graph R with vertex
set 1, ..., t and the edge set formed by pairs {i, j} for which (Vi, Vj) is regular
with respect to G1, . . . , Gk. We k-colour R by the majority colour in the pair
(Vi, Vj). The crucial point is that the graph R cannot contain a monochromatic,
non-bipartite, connected subgraph with a matching of size greater than t/2k

since that would imply the existence of a monochromatic copy of Cn in the
original graph G (see [6], [7]). The following theorem of Erdős and Gallai [2]
shows that forbidding a large matching in each connected component of a
graph is very restrictive, in particular one forbids long cycles.

Theorem 2 Let m ≥ 2. If G is a graph such that G contains no cycle of
length greater than m, then e(G) ≤ m(v(G)− 1)/2.

We begin with a decomposition of R similar to the one exploited in [7].
Let R1, . . . , Rk be the colour classes of R. We may write Ri = R′i ∪ R′′i ,
where R′i is the union of the bipartite components of Ri and R′′i is the union
of the non-bipartite components of Ri. We now classify the vertices of R
according to their position in this partition for each colour. For i ∈ [k], write
V (R′i) = V i

0 ∪ V i
1 where V i

0 and V i
1 are the vertex classes of a bipartition of R′i

and set V i
∗ = V (R′′i ). For τ = (τ1, . . . , τk) ∈ {0, 1, ∗}k, let Vτ =

⋂k
j=1 V

j
τj

and
note that V (R) =

⋃
τ∈{0,1,∗}k Vτ , a disjoint union.

The main idea of the proof is now readily explained. We may think of an ele-
ment τ ∈ {0, 1, ∗}k as a subcube of the k-dimesional hypercube Qk via the corre-
spondence τ → Q(τ ) whereQ(τ) = {c ∈ {0, 1}k : cj = τj whenever τj ∈ {0, 1}}.
In other words we think of a coordinate whose entry is ∗, as a ‘missing bit’ and
we consider the set of all possible ways of filling in these bits. In particular if τ



has only one bit missing then we think of Q(τ ) as an edge of Qk in the natural
way. Let m = 3k, let {τ1, . . . , τm} be a fixed enumeration of the elements of
{0, 1, ∗}k and set v = (v1, . . . , vm) := (|Vτ1 |, . . . , |Vτm |). Using Theorem 2 to
control the density of edges in each colour between the parts Vτ1 , . . . , Vτm of
the graph R, one obtains an inequality of the form

F (v) ≤ 0, (1)

where F is a quadratic form that we do not specify here. We then view
(1) as a constraint in a non-linear programme where we wish to maximise
v(R) =

∑m
i=1 vi, viewed as the objective function. This analytic viewpoint

allows us to import tools from the theory of convex optimisation where first
we use the combinatorial technique of ‘compression’ or ‘shifting’ to reduce (1)
to a spherical constraint. What is remarkable is that (1) is strong enough to
imply that v(R) =

∑m
i=1 vi < t contradicting the assumption that v(R) = t

and thus proving Theorem 1.

Looking more closely at the optimisation problem discussed above, one
finds that

∑m
i=1 vi is maximised precisely when v is supported on a perfect

matching of the hypercube Qk (recall that the coordinates of v are indexed
by the subcubes of Qk). These optimal points naturally correspond to the
following colourings of KM , where M = 2k−1(n− 1).

Let M be a perfect matching of Qk. We express each edge of M as an
element of {0, 1, ∗}k. For each edge τ ∈M form a monochromatic clique K(τ )
of size n − 1 and colour i, where i is the coordinate for which τi = ∗. For
τ, σ ∈M, the edges between K(σ) and K(τ) can be arbitrarily coloured with
any colour j for which τ, σ lie in opposite subcubes of Qk of codimension 1
separated by the jth coordinate (i.e. either σj = 0, τj = 1 or σj = 1, τj = 0). It
is not hard to show that such a colouring avoids monochromatic copies of Cn.
Let us call such a colouring a hypercube colouring. If we inductively construct
a perfect matching on Qk by taking two perfect matchings on a disjoint pair of
subcubes of codimension 1 and consider the associated hypercube colouring, we
recover the colourings considered by Erdős and Graham [3] that we described
in the Introduction. However for k ≥ 4, not all perfect matchings of Qk

decompose as the union of two matchings on a pair of codimension 1 subcubes,
and so we obtain some genuinely new colourings. We conjecture that the
following stability result holds. Recall that for a k-coloured graph G, we let
Gi denote its ith colour class.

Conjecture 2 Let k ≥ 4. Then for any ε > 0, there exists an η > 0 and
n0 ∈ N, such that for all odd n > n0 and N > (2k−1−η)n the following holds. If



G = KN is k-coloured with no monochromatic copy of Cn, then N ≤ 2k−1(n−1)
and there exists a hypercube colouring of the complete graph on 2k−1(n − 1)
vertices H such that V (G) ⊆ V (H) and |Gi
Hi| ≤ εN2 for all i ∈ [k].

The k = 3 case of Conjecture 2 was proved in [5] where the two classes of
colourings the authors consider can be viewed as the colourings that arise from
the two isomorphism classes of perfect matchings in Q3.

A proof of Conjecture 2 is a work in progress. Our starting point is an
‘analytic stability’ statement asserting that an almost optimal point of the
aforementioned non-linear programme must be very close to an optimal point
in Euclidean distance.
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des graphes (Orsay, 1976), Colloq. Internat. CNRS, vol. 260, pp. 399-401.


	Introduction and Results
	Proof Methods and Hypercube Colourings
	References

