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Abstract

Let G be a graph embedded in a nonspherical orientable surface with face-width
≥ 19. We prove that G contains a minor isomorphic to K7.
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1 Introduction and results

A surface Σ is a compact connected 2-dimensional manifold without boundary.
In the analysis boundary components, which we call cuffs, may emerge. We
shall consider only orientable surfaces.

A simple closed curve (s.c.c.) γ in a closed surface Σ is contractible if it
is homotopic to a constant map, and is essential otherwise. A s.c.c. γ is
(surface) separating if cutting Σ along γ disconnects the surface. Every con-
tractible s.c.c. is a separating curve, or equivalently, every nonseparating s.c.c.
is essential. A collar of a s.c.c. γ is its neighbourhood which is homeomorpic
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to a cylinder (as Σ is orientable). Hence γ separates its collar into two com-
ponents, which we call the right and left side of γ. We shall implicitly rely
on the following fact. If a pair of s.c.c. γ, γ′ intersect in a single transversal
crossing, then both γ and γ′ are nonseparating, and also, as Σ is orientable,
nonhomotopic.

We shall consider an embedding of a graph G in Σ as a subset of Σ. The
face-width of G, fw(G), is the greatest integer k, so that every essential curve
γ ⊆ Σ intersects G in at least k points — which we may also assume to be
vertices of G. Note that the sphere contains no essential curves. When talking
about face-width of a graph we will implicitly assume that it is embedded in
a nonspherical surface.

The integral part of Robertson and Seymour’s theory on graph minors
relies on embeddings of graphs in surfaces, and face-width of a graph G ⊆ Σ
is a measure on how well G approximates the surface Σ. They have shown
that if H embeds in Σ, then there is a constant cΣ (highly dependent on the
surface Σ), so that every embedding of G in Σ whose face-width exceeds cΣ
contains H as a minor [6].

Given H , can an absolute bound work for every surface of sufficiently
high genus (admitting an embedding of H)? It is not difficult to show that
fw(G) ≥ 4 forces a K5-minor in G. By a result of Robertson and Vitray [7]
planar graphs cannot embed in nonspherical surfaces with face-width ≥ 3,
which makes G nonplanar and also non-apex. And then we apply Wagner’s
excluded minor theorem for K5 [9]. Krakovski and Mohar [3] have recently
shown that every graph G embedded with fw(G) ≥ 6 in an arbitrary closed
surface Σ contains a K6 minor.

Our main result states that there is a universal constant which works for
every orientable surface in the case of K7.

Theorem 1.1 Let G be a graph embedded in a nonspherical orientable surface
Σ with fw(G) ≥ 19. Then G contains a K7-minor.

We use standard graph terminology from [2] and rely on [4] for the basics on
graph embeddings. The next section gives a sketch of the proof of Theorem 1.1
and we close with a handful of final remarks.

2 Execution

Fix an orientable surface Σ and an embedded graph G satisfying fw(G) ≥ 19.
By a result of Robertson and Vitray [7] (see also [4, Corollary 5.5.14]) we may
assume that G is 3-connected.
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Fig. 1. K7 minor in the toroidal 6× 6 grid, we use standard identifications.

Figure 1 shows K7 as a minor in the toroidal 6 × 6 grid, with ovalized
shapes indicating the vertices obtained after contraction. Note that, opting
for a lighter figure, we allow longer paths between ovals, and also that we
only need three consecutive edges, denoted by a, b, c, which cross the left-right
identification. This figure serves as a signpost for our argument. We shall
construct a sequence of 6 disjoint vertical cycles, 6 disjoint horizontal paths,
and an additional triple of paths that contract to edges denoted by a, b, c.

A face chain in an embedded graph is an alternating sequence

u0h0u1 . . . un−1hn−1un (1)

of vertices u0, . . . , un and faces h0, . . . , hn−1, where every face hi, i = 0, . . . , n−
1, contains both ui and ui+1. The length of a face chain is equal to the number
of its faces (counted with multiplicities). We call u0 and un the endvertices of
a face chain, and say a face chain is closed if its endvertices coincide.

Facial distance between vertices x, y is defined as the length of a shortest
face chain with endvertices x and y, and vertices lying on the same face are
called cofacial.

Now (provided the face-width is at least 2, which we assume) a closed
face chain F without repeated vertices or faces induces a s.c.c. γF obtained
by concatenating simple arcs between consecutive vertices in the face chain
(where every such arc is contained in the appropriate face). By abusing the
notation we shall call a face chain F , for example, essential or nonseparating
if γF is an essential or nonseparating curve, respectively.

Let

F0 = u0h0u1 . . . uk−1hk−1u0 (2)

be a shortest nonseparating face chain in G and γ0 the simple closed curve
induced by F0. Recall the length of F0 satisfies k ≥ 19.



Having fixed F0 and γ0 we can state the following proposition.

Proposition 2.1 Let F ′ be a face chain of length ≤ 9 with endvertices ui

and uj, i, j ∈ {0, . . . , k − 1}. Then every essential curve in
⋃
F0 ∪

⋃
F ′ is

homotopic to γ0.

By induction on the length of F ′ we may assume that F ′ induces a simple
curve γ′, so that γ′ ∩ γ0 = {ui, uj}. The vertices ui, uj split γ0 into a pair of
arcs γij

0 and γji
0 and the combined length of closed curves γij

0 ∪γ′ and γji
0 ∪γ′ is

at most k+18. By the three paths property [8] (see also [4, Proposition 4.3.1])
it is not possible that both γij

0 ∪ γ′, γji
0 ∪ γ′ are separating, and consequently

one of γij
0 ∪ γ′, γji

0 ∪ γ′ is contractible and the other is homotopic to γ0.

As fw(G) ≥ 19 a result of Brunet, Mohar, and Richter [1, Theorem 6.1(1)]
implies:

Proposition 2.2 There exists a collection of nested disjoint homotopic cycles
C = {C0, . . . , C7} so that (i) C4 is contained in

⋃
F0, (ii) all cycles in C are

homotopic to γ0, (iii) no pair of vertices x, y, x ∈ C0, y ∈ C7, are cofacial, and
(iv) every vertex x ∈ C0 ∪C7 is at facial distance at most 4 to some vertex in
{u0, . . . , uk−1}.

For convenience reasons let us fix an orientation of C0 and extend the ori-
entation to C7 by homotopy. We shall later possibly perturb the intermediate
cycles C1, . . . , C6.

Let Δ denote the cylinder bordered by C0 and C7 (which contains cycles
C1, . . . , C6), and let Δ denote the complementary surface. Let G[Δ] be the
subgraph of G induced by Δ, and let G[Δ] be defined analogously. Proposi-
tion 2.2(iv) implies that Δ is minimal possible. If x is an edge or a vertex
in C0 ∪ C7 then the graph G[Δ] − x does not contain eight disjoint cycles
homotopic to C0.

Proposition 2.3 There exists C0−C7 paths
3 Qa, Qb, Qc in G[Δ], so that the

cyclic orderings of their respective endvertices a0, b0, c0 along C0 and a7, b7, c7
along C7 match the orientations of both C0 and C7.

The reasoning goes as follows. Let

F1 = x0g0x1 . . . x�−1g�−1x� (3)

be a shortest face chain lying in Δ whose endvertices x0 and x� lie on C7 and
C0, respectively. By Proposition 2.2(iii) we have � ≥ 2.

3 For an A−B path we will require/assume that none of its internal vertices lie in A ∪B.



Fig. 2. Construction of paths Qa and Qb.

Now F1 induces a simple curve γ1, and we may assume that its left side
intersects C0 in the forward direction. A face f ⊆ Δ incident with xi is a left
face if f does not intersect the right side of γ1. We may also assume that the
number of left faces is as small as possible. This implies, for example, that no
left face incident with x1 intersects C7.

We concatenate right segments of faces of F1 to form a C7 − C0 path Qa.
The path Qb is the boundary of the union of all faces that lie immediately to
the left of Qa — see Figure 2 where the left side of Qa is depicted above Qa.

Let a7, b7 be the endvertices of Qa, Qb in C7, and, similarly, let a0, b0 be
their respective endvertices in C0. We may also assume that x0 = a7 and
x� = a0.

Note that by construction

every vertex v ∈ Qa∪Qb is cofacial with (at least) one of x0, . . . , x�,
and also that a7, b7 and a0, b0 are pairs of cofacial vertices.

(4)

Observe that the dotted regions, depicted in Figure 2, are disks. For
example, the closed face chain containing faces g3, g4, h5, h3 is too short to be
essential. On the other hand, every vertex of g8 ∩ C0 is at facial distance ≤ 4
to some vertex of F0 by Proposition 2.2(iv). Now Proposition 2.1(iii) implies
that the dotted regions between g8 and C0 are contained in a disk bounded by
g8 and C0 (similar observation holds for dotted regions between h0 and C7).

We denote by Δ0 the disk bordered by Qa, Qb and segments of C0 and
C7 which contains

⋃
F0. Let S0 and S7 be maximal subpaths of C0 and C7,

respectively, which are disjoint with Δ0.

The only possible obstruction to a S7−S0 path in Δ\(Qa∪Qb) is a face f in
Δ\Δ0 containing a pair of vertices sa, sb, so that sa ∈ Qa and sb ∈ Qb. By (4)
there exists indices i, j, so that sa is cofacial with xi and sb is cofacial with xj .
Now |i − j| ≥ 4 contradicts the fact that F1 was chosen as short as possible.



On the other hand |i − j| ≤ 3 implies that there exists a nonseparating face
chain of length ≤ 6 (as it would intersect the curve γ1 in a single transversal
crossing). This is also absurd.

Hence there exists a S7 − S0 path in Δ \ (Qa ∪ Qb), which we denote by
Qc. As Δ0 is a disk the orderings of endvertices of paths Qa, Qb, Qc satisfy
Proposition 2.3.

Minimal length of F0 and the planar version of Menger theorem (see for
example [5]) imply:

Proposition 2.4 There exists a family of k disjoint C0 − C7 paths P =
{P0, . . . , Pk−1} in G[Δ].

The paths’ indices are taken modulo k, and we may assume that for every
i the endvertex of Pi+1 along C7, denoted by pi+1, immediately follows the one
of Pi in the orientation of C7. As Δ is a cylinder their respective endvertices
along C0, which we denote by p′i, also match the orientation.

Let us choose a collection of k paths P so that the numbers of their end-
vertices in C7 ∩Δ0 and also in C0 ∩Δ0 are as close to k− 1 as possible. Note
that we can optimize these numbers independently, as F0 induces a minimal
C0, C7 separator in Δ whose order k is the same as |P|.

Now let us show that it is not possible that, say, all of p0, . . . , pk−1 belong
to C7 ∩ Δ0. As a7 and b7 are cofacial, there exists a vertex s ∈ S7 which
is incident with an edge e ∈ G[Δ] − E(C7). Let K be the (C7 ∪ P)-bridge
containing e. As Δ is minimal K has no attachment vertices in C7 − s. And
as G is 3-connected K attaches to one of the paths in P, which we can then
reroute.

Let us assume that

at least two of the paths in P attach to C0 ∩ Δ0 and at least two
paths in P attach to C7 ∩Δ.

(5)

In this case we have.

Proposition 2.5 There exists a linkage between Qa, Qb, Qc and pi0, pi0+1, pi0+2

in C7 and also a linkage between Qa, Qb, Qc and p′j0, p
′

j0+1, p
′

j0+2 in C0, for some
choice of i0, j0 ∈ {0, . . . , k − 1}.

We can, say, for the latter choose j0 + 1 as the last index so that Pj0+1

attaches to C0 ∩Δ0.

A crossing of a path P and a cycle C is a connected component of their
intersection.



Proposition 2.6 We can perturb C and P (given by Propositions 2.2 and
2.4) so that (i) every path in P and every cycle in C cross exactly once, while
(ii) keeping C0 and C7 fixed and also (iii) not altering the endvertices of paths
in P.

This can be done by minimizing the total number of edges contained in
the union of P and C. It is not difficult to argue that no path from P has
two consecutive crossings with the same cycle from C, and vice versa. So let
us choose a cycle Cj, with j as small as possible, which crosses some path
from P twice. By construction, j �= 0. Let us also choose two crossings of Cj

and some path Pi, so that the intermediate segment P ⊆ Pi does not cross
Cj−1 (it has to cross Cj+1, though) and is as short as possible. Now some
P ∈ {Pi−1, Pi+1} crosses the disk bounded by P and Cj, and consequently
crosses Cj−1 twice, which is absurd.

Finally let C6 = {C1, . . . , C6} be the family of 6 cycles. Assuming that
i0 = 0 and j0 ≤ k/2 (we can do that by renumbering of paths in P) let us
define a family C0−C7 paths P6 = {P ′

1, . . . , P
′

6} by the following construction.
For i = 1, 2, 3, let P ′

7−i = Pk−i and let P ′

i be obtained by concatenating the
initial segment of Pi−1, a segment of C4−i in the middle, and the terminal
segment of Pj0−1+i.

The linkages according to Proposition 2.5 and paths Qa, Qb, Qc (by Propo-
sition 2.3) give rise to a triple of cycles crossing all cycles in C6. Together
with C6 and P6 we have a K7-minor by Figure 1.

We shall skip the sketch in case the original choice of P cannot satisfy (5).
In such a case the segments S0 and S7, where the path Qc can attach to, have
to be chosen with additional care in order to allow an appropriate linkage in
Proposition 2.5. The obstruction to the existence of Qc in this case is again a
single face f , yet the of vertices sa, ab can lie in (C0 ∪C7) \ (Qa ∪Qb), and the
arguments needed to eliminate all possible obstructions are more elaborate.

3 Concluding remarks

Most likely the constant 19 from Theorem 1.1 is not optimal. In order to keep
the presentation as clear as possible we have focused on a single realization of
K7 as a minor in the toroidal 6× 6 grid. Allowing several types of K7 models
might allow us to reduce the face-width bound at the expense of making the
proof not as focused and much longer.

A direct generalization of Theorem 1.1 to nonorientable surfaces would
have to exclude both projective plane and Klein bottle, as K7 embeds in



neither of them. Now N3, the nonorientable surface of genus 3, which could
take torus’ place in our proof has several drawbacks. On one hand, it contains
no generic grid and also admits a number of nonequivalent embeddings of K7.
Finally our approach relied on having no orientation reversing s.c.c., their
inclusion would make the analysis much more difficult.
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