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Abstract

A classical conjecture of Erdős and Szekeres states that every set of 2k−2+1 points
in the plane in general position contains k points in convex position. In 2006, Peters
and Szekeres introduced the following stronger conjecture: every red-blue coloring
of the edges of the ordered complete 3-uniform hypergraph on 2k−2 + 1 vertices
contains an ordered k-vertex hypergraph consisting of a red and a blue monotone
path that are vertex disjoint except for the common end-vertices.

Applying the state of art SAT solver, we refute the conjecture of Peters and
Szekeres. We also apply techniques of Erdős, Tuza, and Valtr to refine the Erdős–
Szekeres conjecture in order to tackle it with SAT solvers.
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1 Introduction

The Erdős–Szekeres theorem [5] is, without an exaggeration, one of the most
important results in Ramsey theory. It says that for every integer k ≥ 2 there
is a least number ES(k) such that every set of ES(k)+1 points in the plane in
general position (no three points lie on a common line and all x-coordinates are
distinct) contains k points in convex position. Erdős and Szekeres [5] proved
an upper bound ES(k) ≤

(
2k−4

k−2

)
and posed the Erdős–Szekeres conjecture,

stating that ES(k) = 2k−2 for every k ≥ 2.

In the 1960s, Erdős and Szekeres [6] supported their conjecture with the
lower bound ES(k) ≥ 2k−2. Despite many efforts, the Erdős–Szekeres conjec-
ture is known to hold only for k ≤ 6 and is open for k > 6. The case k = 6 was
proven by Peters and Szekeres [10] who carried out an exhaustive computer
search.

Applying the state of art SAT solver, we refute a natural strengthening of
the Erdős–Szekeres conjecture introduced by Peters and Szekeres [10]. We also
apply techniques of Erdős et al. [7] to refine the Erdős–Szekeres conjecture in
order to tackle it with SAT solvers. Despite this attempt, the Erdős–Szekeres
conjecture remains open.

2 The Peters–Szekeres conjecture

Points p1, . . . , pk ∈ R
2 with increasing x-coordinates form a k-cap if the slopes

of the lines p1p2, . . . , pk−1pk are decreasing. The points p1, . . . , pk form a k-cup
if the slopes are increasing. For integers a, u ≥ 2, let N(a, u) be the maximum
size of a set of points in the plane in general position with no a-cap and no
u-cup. Note that vertices of every k-cap and k-cup are in convex position and
thus we have ES(k) ≤ N(k, k).

Erdős and Szekeres [5] proved the bound ES(k) ≤
(
2k−4

k−2

)
by showing

N(a, u) =

(
a + u− 4

a− 2

)
=

(
a+ u− 4

u− 2

)
(1)

for all integers a, u ≥ 2. Recently, Fox et al. [8] suggested the following frame-
work for studying the Erdős–Szekeres theorem in terms of ordered hypergraphs.
Let K3

N
be the complete 3-uniform hypergraph with the vertex set {1, . . . , N}

ordered by a linear ordering <. For vertices v1 < · · · < vk of K3
N
, the edges

{v1, v2, v3}, {v2, v3, v4}, . . . , {vk−2, vk−1, vk} form a monotone path of length k,
or k-path for short. A coloring of K3

N
is a mapping that assigns either a red



or a blue color to every edge of K3
N
. Let N̂(a, u) be the maximum number N

such that there is a coloring of K3
N

with no red a-path and no blue u-path.

We now observe that N(a, u) ≤ N̂(a, u) for all integers a, u ≥ 2. Let P be
a point set in the plane in general position. We color every triple T of points
from P , ordered by x-coordinates, red if T is oriented clockwise and blue if T
is oriented counterclokwise. Every coloring of K3

N
obtained in this way from

some point set of size N is called realizable. The inequality follows, as, for
every k ≥ 3, k-caps and k-cups in P are in one-to-one correspondence with
red and blue, respectively, k-paths in the realizable coloring obtained from P .

A straightforward generalization of the proof of (1) gives N̂(a, u) = N(a, u)
for all a, u ≥ 2. Peters and Szekeres [10] conjectured that a similar phe-
nomenon occurs for the Erdős–Szekeres conjecture. We state this formally.

If P is a point set in the plane in general position, then every k-tuple of
points from P in convex position is a union of an a-cap and a u-cup with
common endpoints where a and u are some integers satisfying a + u− 2 = k.
Using this fact, Peters and Szekeres [10] generalized the notion of a convex
position to the hypergraph setting as follows. For k ≥ 2, an ordered 3-uniform
hypergraph H on k vertices is called a (convex) k-gon if H consists of a red
and a blue monotone path that are vertex disjoint except for the common
end-vertices. We allow paths in H with two vertices and no edges. Note that
there are 2k−2 pairwise non-isomorphic k-gons for every k ≥ 2. Let ÊS(k) be
the maximum number N such that there is a coloring of K3

N
with no k-gon.

If P is a set of points in the plane in general position, then k-tuples of
points from P in convex position are in one-to-one correspondence with k-
gons in the realizable coloring of K3

|P | obtained from P . Thus we have 2k−2 ≤

ES(k) ≤ ÊS(k) for every k ≥ 2. On the other hand, every monochromatic

k-path is a k-gon, thus from N̂(a, u) =
(
a+u−4

a−2

)
we obtain ÊS(k) ≤

(
2k−4

k−2

)
.

For 2 ≤ k ≤ 5, Peters and Szekeres [10] showed ÊS(k) = 2k−2. For k = 5
this was shown by an exhaustive computer search. Peters and Szekeres con-
jectured that this equality is satisfied for every k ≥ 2. We call this conjecture
the Peters–Szekeres conjecture. As our main result we refute this conjecture.

Theorem 2.1 We have ÊS(7) > 32 and ÊS(8) > 64.

3 The Erdős–Szekeres conjecture revisited

In this section we introduce an equivalent version of the Peters–Szekeres con-
jecture that we use later in a search for a counterexample. Our approach



is based on the following equivalent version of the Erdős–Szekeres conjecture
introduced by Erdős et al. [7].

For integers a, u, k that satisfy 2 ≤ a, u ≤ k ≤ a + u − 2, let N(a, u, k) be
the maximum number N such that there is a set of N points in the plane in
general position with no a-cap, no u-cup, and no k points in convex position.

Conjecture 3.1 (Erdős et al.[7]) For all integers a, u, k with 2 ≤ a, u ≤
k ≤ a + u − 2, we have N(a, u, k) =

∑
u

i=k−a+2
N(i, k + 2 − i). In particular,

N(a, u, k) =
∑

u

i=k−a+2

(
k−2

i−2

)
.

Erdős et al. [7] showed that Conjecture 3.1 is equivalent with the Erdős-
Szekeres conjecture and proved the inequality N(a, u, k) ≥

∑
u

i=k−a+2

(
k−2

i−2

)
for

all a, u, k with 2 ≤ a, u ≤ k ≤ a+ u− 2.

The best known upper bound for N(a, u, k) is N(a, u, k) ≤
(
a+u−4

a−2

)
, which

is obtained from the trivial estimate N(a, u, k) ≤ N(a, u). For k = a + u − 2,
Conjecture 3.1 is true by (1), as N(a, u, k) = N(a, u) in this case. For k =
a+u−3, Conjecture 3.1 says N(a, u, k) =

(
a+u−5

u−3

)
+
(
a+u−5

u−2

)
=

(
a+u−4

u−2

)
, which

is again true.

The gap between known bounds for N(a, u, k) appears first for k = a+u−4.
By a more careful analysis of this first nontrivial case, we improve the best
known upper bound by one for the case a = 4. The proof is omitted.

Proposition 3.2 For every integer k ≥ 3, we have N(4, k, k) ≤
(
k

2

)
− 1.

Now, we introduce a version of Conjecture 3.1 for the hypergraph setting.
For integers a, u, k that satisfy 2 ≤ a, u ≤ k ≤ a + u− 2, let N̂(a, u, k) be the
maximum number N such that there is a coloring of K3

N
with no red a-path,

no blue u-path, and no k-gon.

Conjecture 3.3 For all integers a, u, k with 2 ≤ a, u ≤ k ≤ a + u − 2, we
have N̂(a, u, k) =

∑
u

i=k−a+2
N̂(i, k + 2− i) =

∑
u

i=k−a+2

(
k−2

i−2

)
.

A straightforward generalization of the approach of Erdős et al. [7] gives
the following statement whose proof is again omitted.

Proposition 3.4 Conjecture 3.3 is equivalent with the Peters–Szekeres con-
jecture.

The main profit gained by considering N̂(a, u, k) is that Conjecture 3.3
is, in a certain sense, finer than the Peters–Szekeres conjecture. This allows
us to employ an exhaustive computer search for larger values of k in order
to find a coloring of K3

N
with no red a-path, no blue u-path, and no k-gon



for some suitable integers a, u, and N >
∑

u

i=k−a+2

(
k−2

i−2

)
. This will disprove

Conjecture 3.3 and, by Proposition 3.4, the Peters–Szekeres conjecture.

The exhaustive search for extremal colorings is performed by SAT solvers.
We use a SAT encoding of the following decision problem: for given integers
a, u, k, N ≥ 3, is there a coloring of K3

N
with no red a-path, no blue u-path,

and no k-gon?

4 Results

In our experiments we use the Glucose SAT solver [1], the winner of the
certified UNSAT category of the SAT 2013 competition [2]. All experiments
were conducted on a computer equipped with Intel Xeon E5-1620 CPU running
at 3.60GHz and 63GB of RAM.

We found a coloring c of K3
17 with no red 4-path and no 7-gon. This

refutes Conjecture 3.3 for a = 4 and u = k = 7. It follows from the proof
of Proposition 3.4 that the coloring c can be extended to a coloring of K3

33

with no 7-gon, therefore we refute the Peters–Szekeres conjecture as well. Our
experiments showed that every coloring of K3

18 contains either a red 4-path or

a 7-gon, i. e., N̂(4, 7, 7) = 17.

By running additional tests, we obtained further counterexamples to Con-
jecture 3.3. We found colorings that give N̂(5, 6, 7) ≥ 26, N̂(5, 7, 7) ≥ 27,

N̂(6, 6, 7) ≥ 31, N̂(6, 7, 7) ≥ 32, and even N̂(7, 7, 7) ≥ 33. We also obtained

the bound N̂(4, 8, 8) ≥ 23 that provides a counterexample to Conjecture 3.3
and to the Peters–Szekeres conjecture for k = 8. For k > 8, the input formulas
become too large for the SAT solver, even in the case a = 4 and u = k = 9.

Our experiments verify Conjecture 3.3 for k = 6 and for all possible values
of a and u, except for the case a = u = k. In this case the solver did not
terminate on 17 vertices even after 266 hours of computation.

We also run tests to explore the validity of Conjecture 3.1. Our approach
is based on a restriction of the setting of Conjecture 3.3 to pseudolinear co-
lorings. A coloring c′ of K3

N
is pseudolinear if every 4-tuple of vertices of K3

N

induces a realizable coloring of K3
4 in c′. Clearly, every realizable coloring is

pseudolinear.

Peters and Szekeres [10] call pseudolinear colorings ‘signatures that satisfy
geometric constraints’. However, we feel that the term ‘pseudolinear coloring’
is more accurate, as such colorings of K3

N
are in one-to-one correspondence

with pseudolinear x-monotone drawings of KN , see [3, Theorem 3.2].

Considering only pseudolinear colorings in our experiments, we verified



Conjecture 3.1 in the cases a = 4, u = k = 7 and a = 4, u = k = 8. That
is, we have N(4, 7, 7) = 16 and N(4, 8, 8) = 22. For pseudolinear colorings, all
our results matched the values from Conjecture 3.1. All colorings obtained by
our experiments can be found in [4].

5 Final remarks

The following strengthening of the Erdős–Szekeres conjecture, introduced by
Peters and Szekeres [10], remains open: for every k ≥ 2, is it true that every
pseudolinear coloring of K3

N
with N = 2k−2 + 1 contains a k-gon? Similarly,

Goodman and Pollack [9] conjectured that for every k ≥ 2 the number ES(k)
equals the maximum N for which there is a pseudolinear coloring of K3

N
with

no k-gon. Note that the Goodman-Pollack conjecture might be true even if
the previous strengthening is not.

None of the counterxamples for Conjecture 3.3 is pseudolinear. If there was
a pseudolinear coloring c that refutes Conjecture 3.3, then we could use the
proof of Proposition 3.4 and extend c to a counterexample to the strengthening
above. If c was realizable, then it would give a counterexample even to the
Erdős–Szekeres conjecture.

Another possible direction for further research is to improve the bounds
for ÊS(k) and, possibly, to recognize some structure behind the colorings that
we found. For sufficiently large k, this could lead to a general construction of
colorings of K3

N
with no k-gon for N > 2k−2 + 1.
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conjecture, URL: http://kam.mff.cuni.cz/~balko/ES SAT

[5] Erdős, P., and G. Szekeres, A combinatorial problem in geometry, Compositio
Math. 2 (1935), 463–470.

[6] Erdős, P., and G. Szekeres, On some extremum problems in elementary

geometry, Ann. Univ. Sci. Budapest. Eötvös Sect. Math. 3–4 (1960–61), 53–
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