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Abstract

We study the behaviour of Kr+1-free graphs G of almost extremal size, that is,
typically, e(G) = ex(n,Kr+1)−O(n). We show that such graphs must have a large
amount of symmetry. In particular, if G is saturated, then all but very few of its
vertices must have twins. As a corollary, we obtain a new proof of a theorem of
Simonovits on the structure of extremal graphs with ω(G) ≤ r and χ(G) ≥ k for
fixed k ≥ r ≥ 2.

Keywords: Turán type problems, saturation

1 The first author’s research was supported by EPSRC grant EP/K033379/1. This research
was carried out while the second author was at Uppsala University, where he was supported
by the Knut and Alice Wallenberg Foundation
2 Email: m.tyomkyn@bham.ac.uk
3 Email: andrew.uzzell@math.unl.edu

Available online at www.sciencedirect.com

www.elsevier.com/locate/endm

http://www.elsevier.com/locate/endm
http://www.sciencedirect.com


1 Introduction

Let Tn,r denote the Turán graph on n vertices with r partition classes of size
�n/r� or �n/r� each, and put tn,r := e(Tn,r). From Turán’s theorem we know
that tn,r maximises the size of a Kr+1-free graph of order n. One of the
best known extensions of Turán’s theorem is the Erdős–Simonovits stability
theorem, which says, in particular, that a Kr+1-free graph on n vertices and
tn,r−o(n2) edges can be turned into Tn,r by adding or removing o(n2) edges. To
phrase it qualitatively, a Kr+1-free graph whose size is close to being extremal
looks essentially like the extremal graph. This behaviour became known as
stability, and has been extensively studied in various structures.

In this paper we are concerned with different aspects of Turán stability.
More concretely, we will study Kr+1-free graphs G with e(G) = tn,r − O(n)
or e(G) = tn,r − O(n log n). This is much closer to the Turán threshold than
the range of the Erdős–Simonovits stability theorem and allows to observe
different aspects of stability. Our results can therefore be viewed as a part
of a larger programme of studying the ’phase transition’ of Kr+1-free graphs
near the Turán threshold that has been emphasized by Simonovits.

First we give a new proof of a theorem that was first explicitly proved by
Brouwer [3] (although implicitly it follows from earlier work of Simonovits [7],
and in the case r = 2 it was proved by Andrásfai, Erdős, and Gallai [4]), and
that has been re-discovered several times [1,5,6].

Let

h(n, r) =

{
tn,r −

⌊
n
r

⌋
+ 1, n ≥ 2r + 1,

tn,r − 2, r + 3 ≤ n ≤ 2r,
(1)

and note that the second case is vacuous if r = 2.

Theorem 1.1 If n ≥ r+3, then every Kr+1-free graph of order n and size at
least h(n, r) + 1 is r-colourable.

Unlike the Erdős–Simonovits theorem, which says that a Kr+1-free graph
on sufficiently many edges is approximately r-partite, this theorem gives a
condition for a Kr+1-free graph to actually be r-partite.

A natural generalisation of Theorem 1.1 would be to find the maximal
number of edges in a graph G with |V (G)| = n, ω(G) = r and χ(G) ≥ k. It
is easy to see that the extremal number is of order tn,r − O(n): for instance,
take the disjoint union of a Turán graph Tn′,r and a finite size graph G′ with
ω(G′) = r and χ(G′) ≥ k. Determining the constant in the linear term
asymptotically as k →∞ is less interesting in its own right, since it is closely
related to the asymptotic behaviour of the Ramsey numbers R(r + 1, k).



A much more interesting problem is the structure of the extremal graphs.
One simple way to construct such graphs (more efficiently than the trivial
construction given above) is the following: take a finite size graph G′ with
ω(G′) = r and χ(G′) = k, and blow up an r-clique of G′ in a way that would
maximise the number of edges. Let us call a graph (or, more precisely, a graph
sequence) simple if it is a blow-up of a bounded order graph. It is natural to
ask whether the extremal graph must be simple. This was answered in the
affirmative by Simonovits for r = 2 in [8] and (as a part of a more general
result) for arbitrary r in [9].

We suggest a new generalisation of Theorem 1.1, namely the study of max-
imal (or saturated) Kr+1-free graphs on many edges; note that the extremal
graph for a given chromatic number is a special case. In the spirit of Si-
monovits’ theorem we prove sharp bounds on how large e(G) should be in
order for G to be simple. Perhaps surprisingly, the thresholds for r = 2 and
for r ≥ 3 turn out to be substantially different, with the proof being very
short in the former case and more involved in the latter.

Theorem 1.2 For every c > 0 every 3-saturated graph G on n vertices with
e(G) > tn,2 − cn is simple.

Let r ≥ 3. For every ε > 0 every (r + 1)-saturated graph G on n vertices
with e(G) > tn,r − (2− ε)n/r is simple.

Taking this study further, we obtain a sharp threshold for a maximal
Kr+1-free graph to have a single pair of twin vertices (vertices with identical
neighbourhoods). Clearly, this threshold has to be lower than the bound in
Theorem 1.2. We consider the following theorem to be the main result of this
paper.

Theorem 1.3 For every r ≥ 2 there exists a constant c > 0 such that every
sufficiently large (r + 1)-saturated graph G with e(G) ≥ tn,r − cn log n has a
pair of twin vertices.

Note that unlike the previous theorem, in this case the bounds are similar
for all values of r, though the proof is still much shorter in the case r = 2. As a
corollary of Theorem 1.3, we obtain a new simple proof of the aforementioned
theorem of Simonovits, formally stated as follows.

Theorem 1.4 For each r ≥ 2 and each k ≥ r, there exists m(k, r) such that
if G is an extremal Kr+1-free graph with chromatic number at least k, then G
is a blow-up of a graph G′ with |G′| ≤ m(k, r).

In other words, for every r and k, the sequence of extremal graphs G for



ω(G) ≤ r and χ(G) ≥ k is simple.

2 Clique-saturated graphs

We will frequently apply the following simple corollary of the Andrásfai-Erdős-
Sós Theorem [2].

Lemma 2.1 There exists a function g(r, c) such that the vertex set of every
Kr+1-free graph G with e(G) ≥ tn,r − cn can be split into a set F with |F | ≤
g(r, c) and an r-partite graph V \ F .

2.1 Finite-size reductions

The unique largest (r+1)-saturated graph, the Turán graph Tn,r, is a balanced
blow-up of Kr. Moreover, by Theorem 1.1 a Kr+1-free graph G that has more
than tn,r−n/r+1 edges is r-chromatic. Hence, if G is (r+1)-saturated, then
all edges between different partition classes must be present, so G is complete
r-partite (possibly with unbalanced colour classes), i.e. it is another blow-up
of Kr. It is natural to ask: if we continue to decrease e(G), how long will G
remain a blow-up of a finite order graph? In other words, what is the largest
function fr(n) such that every (r+1)-saturated graph with at least tn,r−fr(n)
edges is a blow-up of a graph whose order does not depend on n?

We begin by proving Theorem 1.2 in the case r = 2.

Theorem 2.2 For every c ≥ 0 there exists m2(c) such that every 3-saturated
graph G on n vertices with e(G) > tn,2−cn is a blow-up of some (triangle-free)
graph H with |H| ≤ m2.

Proof. If G is bipartite, then it must be complete bipartite, and we are done.
If G is not bipartite, then by Lemma 2.1 it is composed of a large bipartite
graph Gb = (U,W,Eb) and an exceptional vertex set Ve with |Ve| ≤ g(r, c).
Now, partition the vertices of U and W according to their Ve-neighbourhood:
for every X ⊂ Ve, define

UX := {u ∈ U : NVe(u) = X} ,

and WX analogously. Take any u ∈ U and w ∈ W . Let X = NVe(u) and
Y = NVe(w), so that u ∈ UX and w ∈ WY . If X ∩ Y = ∅, then u and w
must be adjacent, since G is 3-saturated. On the other hand, if X ∩ Y �=
∅, there can be no edge between u and w, as it would create a triangle.
Hence, the neighbourhoods of u and w are completely determined by their



Ve-neighbourhoods, meaning that two vertices u1, u2 ∈ UX for any given X
are twins (the same holds in W ). Since there are at most 2|Ve(G)| possible
Ve-neighbourhoods, we conclude that G has at most

|Ve(G)|+ 2 · 2|Ve(G)|

twin classes. Thus, the statement of the theorem holds with m2(c) = g(r, c)+
2 · 2g(r,c).

�

Note that extremal triangle-free (≥ k)-chromatic graphs are in particular
3-saturated. As was mentioned in the Introduction, it is easy to construct a
triangle-free, (≥ k)-chromatic graph with tn,2− ckn edges. Thus, as an imme-
diate Corollary of Theorem 2.2 we obtain Theorem 1.4 (Simonovits’ Theorem)
for r = 2.

Corollary 2.3 For each k ≥ 2 there exists a constant m(k, 2) such that if G
is an extremal triangle-free (≥ k)-chromatic graph on n vertices, then G is a
blow-up of a graph G′ with |G′| ≤ m(k, 2).

The following construction will demonstrate that the bound of Theorem 2.2
is sharp in the following sense: given a function f(n) that tends to infinity (no
matter how slowly), there exist 3-saturated graphs G with e(G) = tn,2−nf(n)
yet with an unbounded number of twin classes.

Example 2.4 We may assume that f(n) < log2 n
2

. Let S be a set of f(n)
vertices, let U and W be disjoint sets of 2f(n) vertices each, and divide the
rest of the vertices equally into two sets U ′ and W ′. Give different vertices
of U distinct neighbourhoods in S, and similarly for vertices in W : for each
I ⊂ S, let uI be the vertex in U with NS(uI) = I, and define wI similarly. Join
uI and wJ if and only if I and J are disjoint. Finally, add all edges between
U ′ and W ′, between U ′ and W , and between U and W ′. It is not hard to see
that the resulting graph G is 3-saturated. Also, G has at least 2f(n)+1 + f(n)
distinct neighbourhoods.

Since f(n) < log2 n
2

, we obtain

e(G) > |U ′||W ′|+ |U ′||W |+ |U ||W ′| > tn−f(n),2 − 22f(n)

> tn,2 − nf(n)

2
− 22f(n) > tn,2 − nf(n),

as claimed.



Now let us consider the case r ≥ 3. Perhaps surprisingly, the analogue of
Theorem 2.2 does not hold here, as the following construction shows.

Example 2.5 Let n ∈ N, let m = (1/2) log2 n, and let M =
(

m
m/2

)
; note

that M <
√
n. Take the Turán graph Tn−1,r where V1, . . . , Vr denote its

partition classes. Let W1 ⊂ V1, W2 ⊂ V2 and W3 ⊂ V3 with |W1| = M and
|W2| = |W3| = m. Introduce a new vertex v to G and join it to all of the
vertices of the Wi and to all of the vertices of Vj for j �= {1, 2, 3}. Remove all
edges between different Wi. The resulting graph G′ satisfies

e(G′) ≥ tn−1,r − 2mM −m2 +

⌊
r − 3

r
(n− 1)

⌋
+M + 2m = tn,r − 2n

r
+ o(n).

Now add a matching between W2 and W3 and for each w ∈ W1 we select a
subset Uw ⊂ W2 of size m/2 such that different vertices of W1 receive distinct
subsets. Connect w to Uw in W2 and to W3 \NW3(Uw) in W3.

It is easy to check that obtained graph G is r+1 saturated. Moreover, no
vertices in W1 are twins, so G has an unbounded number of twin classes.

Given r ≥ 3, let cr be the supremum of the numbers c such that every
(r + 1)-saturated graph G with e(G) > tn,r − cn has a bounded number of
twin classes.

Observe that Theorem 1.1 and Example 2.5 imply that 1/r ≤ cr ≤ 2/r.
Our next result shows that cr = 2/r holds for all r ≥ 3, thereby completing
the proof of Theorem 1.2.

Theorem 2.6 For every r ≥ 3 and every ε > 0 there exists mr(ε) such that
every (r + 1)-saturated graph G with e(G) > tn,r − (2− ε)n/r is a blow-up of
some (Kr+1-free) graph H with |H| ≤ mr.

2.2 Twin-free saturated graphs

What is the largest number of edges that an (r + 1)-saturated graph G can
have if no two vertices of G are twins?

In the case r = 2 we have the following result, which is proved along the
same lines as Theorem 2.2.

Proposition 2.7 For each ε > 0 every sufficiently large 3-saturated graph
with e(G) > n2/4− (1/10− ε)n log2 n contains a pair of twins.

On the other hand, it can be shown that Proposition 2.7 is best possible
up to a constant factor in the n log2 n-term.



We omit the proof of Theorem 1.3 for every r ≥ 3 here for space reasons,
but let us give a construction illustrating that its bound is is best possible up
to the value of the constant c.

Example 2.8 For n sufficiently large, we construct a twin-free, (r+1)-saturated
graph on n vertices as follows. Let H be the disjoint union of Tn−r,r and r
isolated vertices u1, . . . , ur. Let V1, . . . , Vr denote the colour classes of the
copy of Tn−r,r.

Let m be a quantity to be defined later and let M =
(

m
m/2

)
. We partition

V1∪· · ·∪Vr into three families of sets
{
W

(i)
1

}r

i=1
,
{
W

(i)
2

}r

i=1
and

{
W

(i)
3

}r

i=1
such

that for each i, we have W
(i)
1 ⊂ Vi, W

(i)
2 ⊂ Vi+1 and W

(i)
3 ⊂ Vi+2 (where the

addition is modulo r), as well as that
∣∣W (i)

1

∣∣ = M and
∣∣W (i)

2

∣∣ = ∣∣W (i)
3

∣∣ = m.
It follows that

n = r(M + 2m+ 1). (2)

Because m = o(M), (2) implies that

M ∼ n/r, (3)

which in turn implies that

m ∼ log2 n. (4)

Now we modify H in order to make it twin-free and maximal Kr+1-free.

For each i, i = 1, . . . , r, we modify H[W
(i)
1 ∪W

(i)
2 ∪W

(i)
3 ] as in Example 2.5.

Then we connect ui to all vertices of W
(i)
1 ∪W

(i)
2 ∪W

(i)
3 and to all vertices of

each Vk, k /∈ {i, i + 1, i + 2} (mod r). Finally, we greedily add edges among
the ui.

Let G denote the resulting graph. It is easy to check that G is (r + 1)-
saturated, twin-free, and that e(G) = tn,r − n log2 n+O(n).

2.3 Large complete subgraphs

Here we consider another way in which an (r + 1)-saturated graph may be
‘close’ to Tn,r, namely, having a large complete r-partite subgraph. We have
shown that if r ≥ 3 and if c is large enough, then there exist (r+1)-saturated
graphs with tn,r − cn edges that are not simple. However, every 4-saturated
graph with at least this many edges must contain a large complete tripartite
subgraph.

Theorem 2.9 For every c > 0 every 4-saturated graph G with e(G) > tn,3−cn
contains a complete tripartite graph on (1− o(1))n vertices.



The proof does not seem to extend straightforwardly to the general case,
which we leave as an open problem.

Problem 2.10 Given r ≥ 4 and c > 0, what is the order of the largest
complete r-partite subgraph in a given (r + 1)-saturated graph with tn,r − cn?
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