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Abstract

The paper deals with extremal problems concerning colorings of hypergraphs. By
using a random recoloring algorithm we show that any n-uniform simple hypergraph
H with maximum edge degree at most Δ(H) ≤ c ·nrn−1, is r-colorable, where c > 0
is an absolute constant. As an application of our proof technique we establish a
new lower bound for the Van der Waerden number W (n, r).
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1 Introduction

A hypergraph is a pair (V,E) where V is a set, called the vertex set of the
hypergraph and E is a family of subsets of V , whose elements are called the
edges of the hypergraph. A hypergraph is n-uniform if every of its edges
contains exactly n vertices. In a fixed hypergraph, the degree of a vertex v
is the number of edges containing v, the degree of an edge e is the number of
other edges of the hypergraph which have nonempty intersection with e. The
maximum edge degree of hypergraph H is denoted by Δ(H).

An r-coloring of hypergraph H = (V,E) is a mapping from the vertex set
V to the set of r colors, {0, . . . , r − 1}. A coloring of H is called proper if it
does not create monochromatic edges (i.e. every edge contains at least two
vertices which receives different colors). A hypergraph is said to be r-colorable
if there exists a proper r-coloring of that hypergraph. Finally, the chromatic
number of hypergraph H is the minimum r such that H is r-colorable.

The first quantitative relation between the chromatic number and the max-
imum edge degree in an uniform hypergraph was obtained by Erdős and Lovász
in their classical paper [1]. They proved that if H is an n-uniform hypergraph
and

Δ(H) ≤ 1

4
rn−1,(1)

then H is r-colorable. However the bound (1) is not tight. The restriction on
the maximum edge degree was successively improved in a series of papers. In
connection with the classical problem related to Property B, Radhakrishnan
and Srinivasan [2] proved that any n-uniform hypergraph H with

Δ(H) ≤ 0, 17

√
n

lnn
2n−1(2)

is 2-colorable. The generalization of the above result was found by Cherkashin
and Kozik [3]. They showed that, for a fixed r ≥ 2 there exists a positive
constant c(r) such that for all large enough n > n0(r), if H is an n-uniform
hypergraph and

Δ(H) ≤ c(r)
( n

lnn

) r−1
r

rn−1,(3)

then H is r-colorable.

Extremal problems concerning colorings of hypergraphs are closely con-
nected to the classical questions of Ramsey theory. The hypergraphs appear-
ing in these challenging problems are very close to be simple. Recall that
hypergraph (V,E) is called simple if every two of its distinct edges share at
most one vertex, i.e. for any e, f ∈ E, e �= f , |e∩f | ≤ 1. It is natural to expect



that it is easier to color simple hypergraphs and that the bounds (1)–(3) can
be improved. In [4] Kostochka and Kumbhat proved that for arbitrary ε > 0
and r ≥ 2, there exists n0 = n0(ε, r) such that if n > n0 and an n-uniform
simple hypergraph H satisfies

Δ(H) ≤ n1−εrn−1,(4)

then H is r-colorable. Since ε > 0 is arbitrary in (4) then, of course, it can be
replaced by some infinitesimal function ε = ε(n) > 0, for which ε(n) → 0 as
n → ∞. Few papers were devoted to the problem of estimating the order of
its growth. Recently the progress was made independently by Kozik [5] and
by Kupavskii and Shabanov [6], who proved respectively that the bounds

Δ(H) ≤ c
n

lnn
rn−1 and Δ(H) ≤ c

n(ln lnn)2

lnn
rn−1

guarantee r-colorability of a simple n-uniform hypergraph H.

The main result of the current paper completely removes the factor n−ε

from the bound (4).

Theorem 1.1 There exists a positive constant α such that for every r ≥ 2,
and every n ≥ 3, any simple n-uniform hypergraph with maximum edge degree
at most α · n rn−1 is r-colorable.

Note that in comparison with (4), Theorem 1.1 holds for any r ≥ 2, not
only for fixed values of r. Methods used in the proof of Theorem 1.1 can
be used to address analogous problems in other classes of hypergraphs. We
present such an extension concerning hypergraphs of arithmetic progressions
over integers. That allows us to derive a new lower bound for the Van der
Waerden number. Recall that the Van der Waerden number W (n, r) is the
minimum N such that in any r-coloring of integers {1, . . . , N} there exists a
monochromatic arithmetic progression of length n.

Theorem 1.2 There exists positive β such that for every r ≥ 2 and n ≥ 3,
we have

W (n, r) ≥ βrn−1.

That improves over the bound of Szabó [7] of the order n−|o(1)|rn−1 and
over recent bounds by Kozik [5] and by Kupavskii and Shabanov [6].

2 Ideas of the proof

In this section we describe a coloring algorithm which underlies the proof of our
main result. Let H = (V,E) be an n-uniform hyper graph and r be a number



of colors. The algorithm follows the general principle of the random recoloring
method : for given non-proper coloring it tries to recolor a small number of
vertices from the monochromatic edges to make the coloring proper.

The algorithm is parameterized by p ∈ (0, 1/2) and gets two inputs: first
is an initial coloring c : V → {0, . . . , r − 1} of the hypergraph, second is an
injective function σ : V → [0, 1], called weight assignment. For every vertex
v, color c(v) assigned to it by the initial coloring is called the initial color of v.
The value σ(v) is called the weight of v. A vertex v is called free if σ(v) ≤ p.
Recall that an edge is monochromatic w.r.t. some coloring if all its vertices get
the same color. In any set of vertices the first vertex is the vertex v with the
minimum weight, i.e. the minimum value of σ(v). We use a succinct notation
(n)r to denote the value of n (mod r).
Algorithm 1. Input: c : V → {0, . . . , r − 1}, σ : V → (0, 1] injective
While there exists a monochromatic edge whose first non–recolored vertex v
is free
Do c(v) → (c(v) + 1)r (i.e. v is recolored with (c(v) + 1)r)
Return c

Note that during the evaluation of the algorithm every vertex changes its
color at most once, therefore the procedure always stops. The main result of
the paper concerning colorings of simple hypergraphs can be reformulated by
using Algorithm 1 as follows.

Theorem 2.1 Let H = (V,E) be an n-uniform simple hypergraph with Δ(H) ≤
α · n rn−1 for some constant α > 0. If the input (c, σ) is chosen uniformly at
random then Algorithm 1 produces a proper r-coloring for H with positive
probability.

In order to analyze the situations in which the coloring returned by the
algorithm is not proper for a fixed hypergraph H = (V,E), we introduce the
notion of h-tree. An h-tree is a rooted tree labelled according to the following
rules:

(i) each tree node x is labelled by an edge e(x) of the hypergraph H,

(ii) each tree edge f is labelled by a vertex v(f) of the hypergraph H,

(iii) for a tree edge f = (x1, x2) we have e(x1) ∩ e(x2) 	 v(f).

So, the nodes of an h-tree correspond to the edges of H and two edges that
are neighbors in the h-tree should intersect in the hypergraph.

Suppose now that the algorithm produces a non-proper coloring and edge
e is monochromatic in the final coloring. We very briefly describe how to
construct an h-tree that witnesses the failure of the algorithm. If during the



evaluation of the algorithm some vertex v is recolored, then it should be the
first non-recolored free vertex of some edge f that at that moment of the
procedure was monochromatic. In this case vertex v is said to blame the edge
f and for every free vertex, which has been recolored during the evaluation
of the algorithm, we choose one edge to be blamed. We say that an edge f1
blames an edge f2 if f1 contains a vertex that blames f2. Starting with the
monochromatic edge e, we use the blaming relationship to find an h-tree with
special properties. The exact estimates for the probability that some fixed h-
tree witnesses a failure of the algorithm depend on the real relations between
the edges of H that label nodes of the h-tree. In every case we estimate the
probability of the corresponding event and then the number of considered
configurations containing a fixed vertex of the hypergraph.

Finally, we show that for appropriately chosen constant α and parameter
p, we can apply a special variant of the Lovász Local Lemma (see [5]) to prove
that all the possible bad events can be avoided with positive probability.
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